Corrections to the book "Linear Time-Varying Systems - Algebraic Analytic Approach" by H. Bourlès and B. Marinescu

- 1. p. v, line 2 from top: read "a été" instead of "à été"
- p. viii, line 7 from top: read [225] instead of [224]
 p. 5,
 - 7th line from top, after $X'_i \cap X'_j$, add "= \emptyset "
 - 3rd line after Definition 3: change \prod to \bigcup
 - 1st line of §1.2.1.5, after " $\mathcal{R}(x, x')$ ", add "or $x\mathcal{R}x'$ "
- 4. p. 6, 9th line of §1.2.2.1, change $\operatorname{Hom}_{\mathcal{C}}(X, X)$ to $\operatorname{Hom}_{\mathcal{C}}(X, Y)$
- 5. p. 9, before $\S1.2.2.4$: delete the sentence in parentheses
- 6. p. 10, lines 12 and 16 from top: read "generator" instead of "cogenerator"
- 7. p. 11, line 6 from top: read "if" instead of "is"
- 8. p. 14,
 - 1st line from top: change " $\mathcal{C} \to \mathcal{C}$ " to " $I \to \mathcal{C}$, where I stands for the category consisting of the object I alone"
 - 4th line from bottom: change "complete" to "cocomplete"
 - 2nd line from bottom: change $x_i \mathcal{R} x_j$ to $x_i \equiv x_j \pmod{\mathcal{R}}$
- 9. p. 15, 1ast line, after "functor", add " $I \rightarrow C$ "
- 10. p. 16, 2nd line after the proof of Proposition 23: change "cocomplete" to "complete"
- 11. p. 26, last line of Lemma and Definition 53, add: "See Lemma 571 below."
- 12. p. 27, 3rd line of Sect. 1.3: suppress a blank and a dot
- 13. p. 41, 4th line of Example 109: change "be" to "is"
- 14. p. 47, Remark 132(a,ii), 2nd line: change M to \mathbf{M} three times
- 15. p. 51,
 - 2nd line of Item (3) of Theorem and Definition 145: change "then f" to "then \bar{f} "

• 2nd line from bottom: change g to x two times

- 16. p. 55, 2nd line from top: after "if", add "s = r and"
- 17. p. 57, line 6 from top: after "by", add "f with respect to"
- 18. p. 58, 6th line of (1.6.9.1): change \bigcup to \bigcup
- 19. p. 60, 3rd line from top, after "limits", add "and continuity"
- 20. p. 62, line 12 from below,
 - add at the beginning of the line "and the converse holds true if $X[\mathfrak{T}]$ is semicomplete"
 - $\bullet\,$ change "§III.5," to "§III.4, Corol. 1 and"
- 21. p. 65,
 - §1.7.3.4, title: change "Inductive" to Projective Limits and Inductive"
 - Just below, add the following:

Let I be a filtering set and let $\{X_i [\mathfrak{T}_i], \psi_j^i\}$ be an inverse system with index set I in the category **LCS** (Definition 21). The projective limit $\lim_{\leftarrow} X_i [\mathfrak{T}_i]$ is defined as usual (Definition 22) and is an LCS $\overset{\leftarrow}{X} [\mathfrak{T}_{\leftarrow}]$. This LCS is complete (resp., semicomplete) if, and only if so is each $X_i [\mathfrak{T}_i]$. Furthermore, every complete LCS is a projective limit of Banach spaces ([190], 19.9(1), 19.10(2)).

- 22. p. 66, 4rd line from below, add the following sentence at the beginning of the line: "Clearly, as defined above, an (\mathcal{FS}) space is a projective limit of Banach spaces with compact maps $\psi_j^i = \rho_j^i$, and dually a (\mathcal{DFS}) space is an inductive limit of Banach spaces with compact maps $\varphi_j^i = \rho_j^i$."
- 23. p. 67,
 - line 16 from bottom: instead of "a ", read "for it is a Schwartz space ([147], §III.4), thus an (\mathcal{FS}) space"
 - line 14 from bottom, at the end of the sentence, add "since from the above it is a (DFS) space"
- 24. p. 68, 2nd line from bottom, after "space.", add: "Furthermore, it can be proved to be an (\mathcal{FS}) space ([149], Chap. 4, Part 4, Corol. 2 of Prop. 5)."
- 25. p. 69, suppress lines 9 and 10 from top
- 26. p. 71,

- 4th line from top: change φ to φ_n
- 7th line from top: after change "a" to "an (\mathcal{FS}) space, thus a"
- 9th line from top: after "is", add "a (\mathcal{DFS}) space, thus is"
- Replace the sentence beginning at line 14 by "Therefore" by the following: "The LCS $\mathcal{D}(X)$ $[\mathfrak{T}_{\rightarrow}^{\infty}]$ and its strong dual $\mathcal{D}'_{\beta}(X)$ have the same topological properties as $\mathcal{E}(X)$ $[\mathfrak{T}_{\rightarrow}^{\infty}]$ and $\mathcal{E}'_{\beta}(X)$, i.e. they are an (\mathcal{FS}) space and a (\mathcal{DFS}) space, respectively."
- p. 72, 8th line from top: put "22.18.7" in parentheses
- 3rd line from bottom: add a right parenthesis after "(14.1.1)"
- 27. p. 82, 2nd line: change B(X) to $\mathcal{B}(X)$
- 28. p. 83, 4th line of Exercise 196: change "categories but are" to "but"
- 29. p. 84, in Exercise 199(2), first line: after "be", add "a"
- 30. p. 85, 2nd line from bottom: change S to X
- 31. p. 86,
 - 5th line from top, before the first "if", add: "(i.e., for every neighborhood V of y in S_2 , there exists a neighborhood U of x in S_1 such that $f(t) \in V$ whenever $t \in U$)"

• 7th line from top, before "and", add: "(i.e.,
$$\lim_{t \to a} f(t) = f(a)$$
)"

- 32. p. 87, in Exercise 213
 - Item (v), 3rd line: suppress "general"
 - Item (viii, b), 3rd line: supress "a"
- 33. p. 88, 3rd line from bottom: add a hyphen between "group" and "homomorphism
- 34. p. 92, 5th line from bottom: suppress once "GCD, EDR"
- 35. p. 93,
 - in Remark 220(b), 1st line, change "properties (ii)" to "property (i) of Definition 218"
 - in Definition 221, at the end of the second line, add "where $n1 \triangleq 1 + \ldots + 1$ (*n* times)"
- 36. p. 107, 9th line from top: change "jth" to "ith"

37. p. 110, 6th line from bottom, change the expression $\beta_i = \sum_{1 \le i \le n} p_{ij} \alpha_i$

to
$$\beta_i = \sum_{1 \le j \le n} p_{ij} \alpha_j$$

- 38. p. 129, 6th line from bottom: delete 340
- 39. p. 137, 4th line from bottom: after " ∂_k ", add "is"
- 40. p. 138,
 - 9th line from top: change "makes sense" to "holds"
 - 11th line from top: change s to \mathfrak{s} and s' to \mathfrak{s}'
- 41. p. 139, 1st line of the proof of Theorem 362, before "(i):", add "We proceed by contradiction."
- 42. p. 141,
 - 2nd line from top, delete "(i)"
 - 4th line from top, change "quotient division ring" to "division ring of fractions"
- 43. p. 142, 13th line from top, after the parenthesis, add "for i = 0"
- 44. p. 144, 4th line from bottom, change P to P_N
- 45. p. 146, 2nd line from top: multiply the right-hand member of the equality by $(-1)^N$
- 46. p. 149, end of the proof of Theorem 383: close the parenthesis
- 47. p. 152, 9th line from top: change "Jacobson ideal" to "Jacobson radical".
- 48. p. 153, 3rd line from top: read "V.1" instead of "VI.1"
- 49. p. 181,
 - 2nd line from bottom: change "and V" to ". (i) Let V be"
 - 1st line from bottom: add the following to the last sentence: (ii) Let $u : \mathbf{K} \to \mathbf{K}$ be a homomorphism. Prove that u is injective. (Hint: use Theorem 227 and Lemma 232.)
- 50. p. 185, 7th line from top: change $X \lambda$ to $t \lambda$
- 51. p. 204,
 - 6th line, change xa by = 1 to ax yb = 1
 - 5th line of Corollary 529: change (a, b) to (b, a) and "right-" to "left-"
 - 3rd line from bottom: change (a, b) to (b, a)
 - 2nd line from bottom: change ab = b'a' to ba = a'b', and (a', b) to (b, a'), and "right-" to "left-"

- 1st line from bottom: change "(a', b) is strongly right-" to "(b, a') is strongly left-"
- 52. p. 205, 1st line from top: change ab = b'a' to ba = a'b'
- 53. p. 272, lines 6 and 7 of the proof of Theorem 707:
 - delete "we have ... Therefore,"
 - after "is injective", add "(Exercise 472(ii))"
- 54. p. 274, lines 6, 13 and 21 from top: change "monomorphism" to "homomorphism"
- 55. p. 287, 3rd and 8th line of Theorem 752, change

•
$$X^n + p_1 X^{n-1} + \dots + p_n$$
 to $X^n - p_1 X^{n-1} + \dots + (-1)^n p_n$
• $X^n + p_1 A^{n-1} + \dots + p_n I_n$ to $X^n - p_1 A^{n-1} + \dots + (-1)^n p_n I_n$

56. p. 298,

- 1st line of the proof of Lemma 777: change "(i) and" to "(i) is proved in ([28], §V.16, Theorem 1)."
- $\bullet\,$ delete the last sentence of the 1st § of the proof
- at the beginning of the 2nd §, suppress "(1)"
- delete lines 12 to 15
- delete $\S(2)$ of the proof
- 57. p. 315, 4th line of Prop. 810, in the brackets: change \mathcal{S} to \mathcal{S}_k
- 58. p. 346, 9th line of Theorem and Definition 863, after afer "observable image representation", add ", i.e. there exists an **E**-linear bijection $\overline{(S \bullet)}$: ${}^{r}W \xrightarrow{\sim} \mathfrak{B}_{W}(M)$ induced by the **E**-linear injection $(S \bullet)$: ${}^{r}W \xrightarrow{\sim} {}^{k}W$ "
- 59. p. 360,
 - Instead of the 4 last lines of Proposition 881, read the following: "The following conditions are equivalent:
 - (i) M is strongly controllable;
 - (ii) M is controllable;
 - (iii) M is Kalman-controllable;
 - (iv) there exists an integer $s \geq 1$ such that $\operatorname{rk}_{\mathbf{k}} \Gamma_{s}(t_{0}) = n;$
 - (v) there exists a discrete subset S of Ω such that $\operatorname{rk}_{\mathbf{k}}\Gamma_{n}(t) = n$ for all $t \in \Omega \setminus S$."

- In the proof of Proposition 881,
 - (a) 3rd line from top, instead of "(i)(a)", read "(ii)⇒(iii) by Theorem and Definition 879(3).
 (iii)⇒(iv):"
 - (b) 5th line from bottom, instead of "(b)", read "(iv) \Rightarrow (iii):"
 - (c) Last line, instead of "For (ii)", read "(iii) \Leftrightarrow (v):"
 - (d) At the end of the proof, the following is added: "(v) \Rightarrow (i): (iv) holds if, and only if there exists a submatrix $\Delta_n(t)$ of $\Gamma_n(t)$, consisting of n columns of $\Gamma_n(t)$, such that $|\Delta_n(t)| \neq 0$ for all $t \in \Omega \setminus S$. This means that the analytic function $t \mapsto |\Delta_n(t)|$ is nonzero, i.e. $\operatorname{rk}_{\mathbf{K}} \Delta_n = \operatorname{rk}_{\mathbf{K}} \Gamma_n \neq 0$. Therefore, (i) holds by Theorem and Definition 879(2)."
- 60. p. 390, in Exercise 939, after the end of the 2nd sentence, add: "(Hint: use Theorem and Definition 185(ii).)"
- 61. p. 396, in Part (ii) of Exercise 956, read " Ω " instead of " $\Omega \setminus S$ "
- 62. p. 390, in Exercise 935, add after the last line: "(Hint: show that $\bar{P} \to P \delta_x$, where $\bar{P} = P + \mathfrak{m}$, is an isomorphism.)"
- 63. p. 400,
 - 10th line from bottom: at the end of the sentence, the following is added: "and Ilchmann *et al.* [163]"
 - 9th line from bottom: this sentence is deleted
- 64. p. 415, Definition 982, replace $\chi(f) = a$ by $\chi[f] = a$
- 65. p. 416, Theorem 425: in the last line, read "not exponentially stable" instead of "exponentially unstable"
- 66. 420, Definition 990: To be coherent with the definition in the literature (see, e.g., [286]), ∂ should be replaced by $\delta = t\partial$
- 67. p. 452: line 8 from bottom: read $\{-a\}$ instead of $\{a\}$
- 68. p. 425, lines 14 and 16 from top: replace $\check{\mathbf{K}}$ and $\breve{\mathbf{K}}$ by $\widetilde{\mathbf{K}}$
- 69. p. 426, line 1 from top: replace a_n by a_m
- 70. p. 443, Section 6.7.1:
 - after the first sentence add: Laurent polynomials in the indeterminate q must be used for Theorem 367 to apply (simplicity of the ring \mathbf{T})
 - $\bullet\,$ delete the last sentence of the first paragraph

71. p. 630, 25th line from top: delete the entry "stably free"