Injectivity and flatness of semitopological modules

Henri Bourlès*

July 12, 2011

Abstract

The spaces \mathcal{D} , \mathcal{S} and \mathcal{E}' over \mathbb{R}^n are known to be flat modules over $\mathbf{A} = \mathbb{C}[\partial_1, ..., \partial_n]$, whereas their duals \mathcal{D}' , \mathcal{S}' and \mathcal{E} are known to be injective modules over the same ring. Let \mathbf{A} be a Noetherian \mathbf{k} -algebra ($\mathbf{k} = \mathbb{R}$ or \mathbb{C}). The above observation leads us to study in this paper the link existing between the flatness of an \mathbf{A} -module E which is a locally convex topological \mathbf{k} -vector space and the injectivity of its dual. We show that, for dual pairs (E, E') which are (\mathcal{K}) over \mathbf{A} -a notion which is explained in the paper—, injectivity of E' is a stronger condition than flatness of E. A preprint of this paper (dated September 2009) has been quoted and discussed by Shankar [12].

1 Introduction

Consider the spaces \mathcal{D} , \mathcal{S} and \mathcal{E}' over \mathbb{R}^n , as well as their duals \mathcal{D}' , \mathcal{S}' and \mathcal{E} . Ehrenpreis [5], Malgrange [8], [9] and Palamodov [10] proved that \mathcal{D} , \mathcal{S} and \mathcal{E}' are flat modules over $\mathbf{A} = \mathbb{C}\left[\partial_1, ..., \partial_n\right]$ whereas \mathcal{D}' , \mathcal{S}' and \mathcal{E} are injective over \mathbf{A} . If F is any of these modules, all maps $F \to F : x \mapsto ax$ ($a \in \mathbf{A}$) are continuous; using Pirkovskii's terminology ([11], p. 5), this means that F is semitopological. This observation leads to wonder whether there exists a link between the injectivity of a semitopological \mathbf{A} -module and the flatness of its dual. The existence of such a link is studied in this paper.

2 Preliminaries

Notation 1 *In what follows,* **A** *is a Noetherian domain (not necessarily commutative) which is a* \mathbf{k} -algebra ($\mathbf{k} = \mathbb{R}$ or \mathbb{C}).

Let E, E' be two **k**-vector spaces. Assume that E' is a left **A**-module and that there exists a nondegenerate bilinear form $\langle -, - \rangle : E \times E' \to \mathbf{k}$. Then

^{*}SATIE, ENS Cachan/CNAM, 61 Avenue President Wilson, F-94230 Cachan, France (Henri.Bourles@satie.ens-cachan.fr).

E and E' are locally convex topological vector spaces endowed with the weak topologies $\sigma(E, E')$ and $\sigma(E', E)$ defined by $\langle -, - \rangle$; the pair (E, E') is called dual (with respect to the bilinear form $\langle -, - \rangle$).

Assume that the left **A**-module E' (written $_{\mathbf{A}}E'$) is semitopological for the topology $\sigma(E', E)$. Then the **k**-vector space E becomes a right **A**-module (written $E_{\mathbf{A}}$), setting

$$\langle x \, a, x' \rangle = \langle x, a \, x' \rangle \tag{1}$$

for any $x \in E$, $x' \in E'$ and $a \in \mathbf{A}$, and it is obviously semitopological, i.e., all maps $E \to E$: $x \mapsto x \, a \ (a \in \mathbf{A})$ are continuous. Conversely, one can likewise prove that if the right \mathbf{A} -module $E_{\mathbf{A}}$ is semitopological for the topology $\sigma\left(E,E'\right)$, then $_{\mathbf{A}}E'$ is semitopological for the topology $\sigma\left(E',E\right)$. By (1), the transpose of the left multiplication by $a \in \mathbf{A}$, denoted by $a \bullet : E' \to E'$, is the right multiplication by a, denoted by $\bullet a : E \to E$.

Notation 2 In what follows, (E, E') is a dual pair and $E_{\mathbf{A}}$ (or equivalently $_{\mathbf{A}}E'$) is a semitopological module.

The duality bracket $\langle -, - \rangle$ is extended to an obvious way to $E^{1 \times k} \times (E')^k$; then $\left(E^{1 \times k}, (E')^k\right)$ is again a dual pair. Let $P \in \mathbf{A}^{q \times k}$; this matrix determines a continuous linear map $P \bullet : (E')^k \to (E')^q : x' \mapsto P x'$, the transpose of which is $\bullet P : E^{1 \times q} \times E^{1 \times k} : x \mapsto x P$.

Example 3 Let E' be the space of distributions \mathcal{D}' , \mathcal{S}' or \mathcal{E}' over \mathbb{R}^n and E the associated space of test functions. From the above, the transpose of $\partial_i \bullet : E' \to E'$ is $\bullet \partial_i : \mathcal{E} \to \mathcal{E}$, and for any $T \in E'$, $\varphi \in E$, $\langle \varphi \partial_i, T \rangle = \langle \varphi, \partial_i T \rangle$. Since $\langle \varphi, \partial_i T \rangle = -\langle \partial_i \varphi, T \rangle$, one has $\varphi \partial_i = -\partial_i \varphi$ ($\varphi \in E$), i.e., $\bullet \partial_i = -\partial_i \bullet$.

Consider the following sequences where $P_1 \in \mathbf{A}^{k_1 \times k_2}, P_2 \in \mathbf{A}^{k_2 \times k_3}$:

$$\mathbf{A}^{1 \times k_1} \xrightarrow{\bullet P_1} \mathbf{A}^{1 \times k_2} \xrightarrow{\bullet P_2} \mathbf{A}^{1 \times k_3}, \tag{2}$$

$$E^{1 \times k_1} \xrightarrow{\bullet P_1} E^{1 \times k_2} \xrightarrow{\bullet P_2} E^{1 \times k_3}, \tag{3}$$

$$(E')^{k_3} \xrightarrow{P_2 \bullet} (E')^{k_2} \xrightarrow{P_1 \bullet} (E')^{k_1}. \tag{4}$$

The facts recalled below are classical:

Lemma 4 (i) The module $E_{\mathbf{A}}$ is flat if, and only if whenever (2) is exact, (3), deduced from (2) using the functor $E \bigotimes_{\mathbf{A}} -$, is again exact ([10], Part I, §I.3, Prop. 5).

(ii) The module $_{\mathbf{A}}E'$ is injective if, and only if whenever (2) is exact, (4), deduced from (2) using the functor $\mathrm{Hom}_{\mathbf{A}}(-,E')$, is again exact ([10], Part I, §1.3, Prop. 9).

(iii) For any matrix $P_2 \in \mathbf{A}^{k_2 \times k_3}$, there exist a natural integer k_1 and a matrix $P_1 \in \mathbf{A}^{k_1 \times k_2}$ such that (2) is exact. Conversely, given a matrix $P_1 \in \mathbf{A}^{k_1 \times k_2}$, there exists a matrix $P_2 \in \mathbf{A}^{k_2 \times k_3}$ such that (2) is exact if, and

only if $\operatorname{coker}_{\mathbf{A}}(\bullet P_1) = \mathbf{A}^{1 \times k_2} / (\mathbf{A}^{1 \times k_1} P_2)$ is torsion-free (see, e.g., [2], Lemma

(iv) The following equalities hold ([1], §IV.6, Corol. 2 of Prop. 6):

$$\begin{array}{rcl}
\ker_{E'}(P_1 \bullet) & = & \left(\operatorname{im}_E(\bullet P_1)\right)^0, \\
\overline{\operatorname{im}_{E'}(P_2 \bullet)} & = & \left(\ker_E(\bullet P_2)\right)^0
\end{array}$$

where $(.)^0$ is the polar of (.).

Consider the sequence involving 2 + n maps $\bullet P_i$ $(1 \le i \le 2 + n)$

$$\mathbf{A}^{1 \times k_1} \xrightarrow{\bullet P_1} \mathbf{A}^{1 \times k_2} \xrightarrow{\bullet P_2} \mathbf{A}^{1 \times k_3} \longrightarrow \dots \xrightarrow{\bullet P_{2+n}} \mathbf{A}^{1 \times k_{3+n}}$$
 (5)

where $n \geq 0$.

Definition 5 The module $_{\mathbf{A}}E'$ is called n-injective if whenever (5) is exact, (4) is again exact.

The following is obvious:

Lemma 6 (i) If the module ${}_{\mathbf{A}}E'$ is n-injective $(n \geq 0)$, then it is n'-injective for all integers n' such that $n' \geq n$.

(ii) The module $_{\mathbf{A}}E'$ is 0-injective if, and only if it is injective.

Lemma 7 (1) If (3) is exact, then $\overline{\operatorname{im}_{E'}(P_2 \bullet)} = \ker_{E'}(P_1 \bullet)$. (2) If (4) is exact, then $\overline{\operatorname{im}_E(\bullet P_1)} = \ker_E(\bullet P_2)$.

Proof. (1) If (3) is exact, then $\ker_E(\bullet P_2) = \operatorname{im}_E(\bullet P_1)$, therefore $(\ker_E(\bullet P_2))^0 = (\operatorname{im}_E(\bullet P_1))^0$ with $(\ker_E(\bullet P_2))^0 = \operatorname{im}_{E'}(P_2\bullet)$ and $\left(\operatorname{im}_{E}\left(\bullet P_{1}\right)\right)^{0} = \ker_{E'}\left(P_{1}\bullet\right).$

(2) If (4) is exact, then $\ker_{E'}(P_1 \bullet) = \operatorname{im}_{E'}(P_2 \bullet)$, therefore $(\operatorname{im}_E \bullet P_1)^0 = \operatorname{im}_{E'}(P_2 \bullet)$, thus $(\operatorname{im}_E(\bullet P_1))^{00} = (\operatorname{im}_{E'}(P_2 \bullet))^0 = (\overline{\operatorname{im}_{E'}(P_2 \bullet)})^0 = (\overline{\operatorname{im}_{E'}($ $(\ker_E(\bullet P_2))^{00}$, and $\overline{\operatorname{im}_E(\bullet P_1)} = \ker_E(\bullet P_2)$ by the bipolar theorem since $\ker_E(\bullet P_2)$ is closed.

3 Injectivity vs. flatness

Lemma and Definition 8 (1) Let $P \in \mathbf{A}^{k \times r}$; Conditions (i)-(iv) below are equivalent:

- (i) $P \bullet : (E')^r \to (E')^k$ is a strict morphism and so is also $\bullet P : E^{1 \times k} \to E^{1 \times r}$;
- (ii) $P \bullet : (E')^r \to (E')^k$ is a strict morphism with closed image (in $(E')^k$); (iii) $\bullet P : E^{1 \times k} \to E^{1 \times r}$ is a strict morphism with closed image (in $E^{1 \times r}$);
- (iv) both maps $\bullet P: E^{1\times k} \to E^{1\times r}$ and $P \bullet : (E')^r \to (E')^k$ have a closed image.
- (2) The dual pair (E, E') is said to be Köthe (or (K), for short) over **A** if for any positive integers k, r and any matrix $P \in \mathbf{A}^{k \times r}$, the following condition holds: $\bullet P: E^{1\times k} \to E^{1\times r}$ has a closed image if, and only if $P \bullet : (E')^r \to (E')^k$ has a closed image.

Proof. (1): see, e.g., ([6], $\S 32.3$).

Remark 9 (1) The dual pair (E, E') is not necessarily (K) over **A** by ([1], §II.6, Remark 2 after Corol. 4 of Prop. 7); see, also, ([3], Prop. 2.3).

- (2) Assume that E is a Fréchet space (e.g., E = S), E' is its dual and $\langle -, \rangle$ is the canonical duality bracket. Then for any integer k, $E^{1 \times k}$ is again a Fréchet space, and the dual pair (E, E') is (K) over **A** by ([1], §IV.4, Theorem 1).
- (3) Whether the above holds when E is an arbitrary (\mathcal{LF}) space was mentioned in ([4], §15.10) as being an open question; to our knowledge, this question is still open today.

Lemma 10 Let $P_1 \in \mathbf{A}^{k_1 \times k_2}$.

- (i) Assume that $_{\mathbf{A}}E'$ is injective. Then $\mathrm{im}_{E'}(P_1\bullet)$ is closed (or equivalently, $_{\mathbf{P}_1}:E^{1\times k_1}\to E^{1\times k_2}$ is strict).
- (ii) Assume that $\operatorname{coker}_{\mathbf{A}}(\bullet P_1)$ is torsion-free and $E_{\mathbf{A}}$ is flat. Then $\operatorname{im}_E(\bullet P_1)$ is closed (or equivalently, $P_1 \bullet : (E')^{k_2} \to (E')^{k_1}$ is strict).

Proof. (i): By Lemma 4(iii), there exists a matrix $P_0 \in \mathbf{A}^{k_0 \times k_1}$ such that the sequence

$$\mathbf{A}^{1 \times k_0} \xrightarrow{\bullet P_0} \mathbf{A}^{1 \times k_1} \xrightarrow{\bullet P_1} \mathbf{A}^{1 \times k_2}$$

is exact, and since ${}_{\mathbf{A}}E'$ is injective, the sequence

$$(E')^{k_2} \xrightarrow{P_1 \bullet} (E')^{k_1} \xrightarrow{P_0 \bullet} (E')^{k_0}$$

is exact. Therefore, $\operatorname{im}_{E'}(P_1 \bullet) = \ker_{E'}(P_0 \bullet)$, thus $\operatorname{im}_{E'}(P_1 \bullet)$ is closed, and $\bullet P_1 : E^{1 \times k_1} \to E^{1 \times k_2}$ is strict by ([6], §32.3).

(ii): Since $\operatorname{coker}_{\mathbf{A}}(\bullet P_1)$ is torsion-free, by Lemma 4(iii) there exists $P_2 \in \mathbf{A}^{k_2 \times k_3}$ such that the sequence (2) is exact. Since $E_{\mathbf{A}}$ is flat, the sequence (3) is exact. Therefore, $\operatorname{im}_E(\bullet P_1) = \ker_E(\bullet P_2)$ is closed, and $P_1 \bullet : (E')^{k_2} \to (E')^{k_1}$ is strict by ([6], §32.3).

Theorem 11 Assume that the dual pair (E, E') is (K) over **A**.

- (1) If $_{\mathbf{A}}E'$ is injective, then $E_{\mathbf{A}}$ is flat.
- (2) Conversely, if $E_{\mathbf{A}}$ is flat, then $_{\mathbf{A}}E'$ is 1-injective.
- **Proof.** (1) Assume that $_{\mathbf{A}}E'$ is injective and (2) is exact. Then (4) is exact, which implies that $\mathrm{im}_E\left(\bullet P_1\right)=\ker_E\left(\bullet P_2\right)$ according to Lemma 7(2). By Lemma 10(i), $\mathrm{im}_{E'}\left(P_1\bullet\right)$ is closed. Since (E,E') is (\mathcal{K}) , $\mathrm{im}_E\left(\bullet P_1\right)$ is also closed. Hence $\mathrm{im}_E\left(\bullet P_1\right)=\ker_E\left(\bullet P_2\right)$, i.e., (3) is exact. This proves that $E_{\mathbf{A}}$ is flat.
- (2) Assume $E_{\mathbf{A}}$ is flat and the sequence (5) is exact with n=1. Then, the sequence

$$E^{1 \times k_1} \xrightarrow{\bullet P_1} E^{1 \times k_2} \xrightarrow{\bullet P_2} E^{1 \times k_3} \xrightarrow{\bullet P_3} E^{1 \times k_4}$$

is exact. By Lemma 7(1) we obtain

$$\overline{\operatorname{im}_{E'}(P_2\bullet)} = \ker_{E'}(P_1\bullet).$$

In addition, $\operatorname{im}_{E}(\bullet P_{2}) = \ker_{E}(\bullet P_{3})$, thus $\operatorname{im}_{E}(\bullet P_{2})$ is closed, and since (E, E') is (\mathcal{K}) , $\operatorname{im}_{E'}(P_{2}\bullet)$ is closed. This proves that $\operatorname{im}_{E'}(P_{2}\bullet) = \ker_{E'}(P_{1}\bullet)$, i.e., the sequence (4) is exact, and ${}_{\mathbf{A}}E'$ is 1-injective. \blacksquare

4 Concluding remarks

Consider a dual pair (E, E') which is (K) over the **k**-algebra **A**. As shown by Theorem 11, injectivity of $_{\mathbf{A}}E'$ implies flatness of $E_{\mathbf{A}}$. The converse does not hold, since flatness of $E_{\mathbf{A}}$ only implies 1-injectivity of $_{\mathbf{A}}E'$. For the sequence (5) to be exact with n=1, $\operatorname{coker}_{\mathbf{A}}(\bullet P_1)$ must be torsion-free, therefore 1-injectivity is a weak property. To summarize, injectivity of $_{\mathbf{A}}E'$ is a stronger condition than flatness of the dual $E_{\mathbf{A}}$. A convenient characterization of dual pairs (E, E') which are (K) over the **k**-algebra **A** is an interesting, probably difficult, and still open problem.

Acknowledgement 12 The author would like to thank Prof. Ulrich Oberst, whose comments were very helpful in improving the manuscript.

References

- [1] N. BOURBAKI, Espaces vectoriels topologiques, Masson, Paris, 1981. (English translation: Topological Vector Spaces, Springer, 1987.)
- [2] H. BOURLÈS AND U. OBERST, "Duality for Differential-Difference Systems over Lie Groups", SIAM J. Control Opt., 48 (4), 2051-2084, 2009.
- [3] S. DIEROLF AND D.N. ZARNADZE, "On Homomorphisms Between Locally Convex Spaces", *Note di Matemarica*, **XII**, 27-41, 1992.
- [4] J. DIEUDONNÉ AND L. SCHWARTZ, "La dualité dans les espaces (\mathcal{F}) et (\mathcal{LF}) ", Ann. Inst. Fourier, 1, 61-101, 1949.
- [5] L. Ehrenpreis, Fourier analysis in several complex variables, Wiley, 1970.
- [6] G. KÖTHE, Topological Vector Spaces II, Springer, 1979.
- [7] S. MACLANE, Categories for the Working Mathematician, 2nd ed., Springer, New York, 1998.
- [8] B. Malgrange, "Sur les systèmes différentiels à coefficients constants", Séminaire Jean Leray (Collège de France, Paris), 7 (1961-1962), pp. 1-13.
- [9] B. Malgrange, "Systèmes différentiels à coefficients constants", Séminaire Bourbaki, 246 (1962-1963), pp. 1-11.
- [10] V.P. Palamodov, Linear Differential Operators with Constant Coefficients, Springer, 1970.

- [11] A.Y. PIRKOVSKII, "Flat Cyclic Fréchet Modules, Amenable Fréchet Algebras, and Approximate Identities", Arxiv preprint math/0610528, 2006.
- [12] S. Shankar, "On the dual of a flat module in TOP", Linear Algebra Appl., 433, 1077-1081, 2010.