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Abstract

The interconnection of linear systems may exhibit disturbing phenomena, like hidden modes or a lack of control variables.
These features, which cannot be taken into account by the transfer function approach, are here explained by utilizing the
language of modules, which is strongly related to Willems’ behavorial approach. Several examples are carefully discussed.
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0. Introduction and motivating examples

Consider, as in [20] and [2], the constant linear
monovariable system

y-y=u—u, (1)

the transfer function of which is (s — 1)/(s* — 1) =
1/(s + 1). It corresponds to the block diagram in
Fig. I,sincea —u=0+v, y—y=v.

Setz=y+yp—-u.Then,z —z=5y—-y—u+u=0;
z satisfies an unstable equation which corresponds
to the hidden mode 1 of (1). It clearly implies that
system (1) is not stabilizable.

Take now the “reverse” block diagram as in Fig. 2.,
which corresponds to u = w—w = y+ y, therefore, to

yty=u (2)

Its transfer function is again 1/(s + 1); system (2)
is input—output stable (see Section 1.10), hence it does
not possess the same input—output behavior as (1).
The internal variable w, which satisfies w — w = u,
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Fig. 1. System (1).
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Fig. 2. System (2).

diverges when lim,_ o u(¢t) = 0: it again corresponds
to the hidden mode 1.

Last, consider the feedback system (3) in Fig. 3.

Its transfer function is 7/(1 + 75). If TS = —1, the
loop becomes “ill-posed” in the sense of [29]. What
is then the nature of system (3)?

These phenomena, which have been sometimes
ignored in the control literature, seem to be difficult
to explain in any classic framework. The difference
between systems (1) and (2) cannot be taken into
account by the transfer function approach, although
it certainly could be within the polynomial approach
[1, 19, 20, 27]. System (3), when ST = —1, is much
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Fig. 3. Feedback system (3).

worse: Section 3.2 will demonstrate that the control
variables, which are the free variables par excel-
lence, loose their independence and must satisfy a
homogeneous linear differential equation. Thus, a
fresh look at the utmost important notion of intercon-
nection confirms Willems’ standpoint [31]: it is often
misleading to distinguish between system variables.
Interconnections, which have already been examined
within the behavorial setting [32], (see, also, [22]),
is here expressed via a standard algebraic tool, i.e.,
fibered sums of modules [23, 24]. All phenomena
described above are then most easily understood.

The paper is organized as follows. The module-
theoretic approach is first briefly reviewed. Section 2
relates interconnection to the fibered sum with some
examples. Section 3 examines the above case-studies
and another one, slightly different from Fig. 3, which
displays a surprising change of rank. An appendix
demonstrates the equivalence with the behavorial
approach to interconnection [32] by taking advan-
tage of its recent categorical interpretation [7] (see,
also, [26]).

A preliminary version has already been published
in [15].

1. A brief overview of the module-theoretic language
(See also [16])

1.1. Let £ be a given differential ground field [21],
where the derivation is written d/d¢ = . A constant
¢ € k is an element such that ¢ = 0. A field of con-
stants only contains constant elements.

1.2. Write k[d/d¢] the integral ! ring of linear differ-
ential operators of the form

X

d
Zﬁnitea1 —d?’ a, € k.

Y By integral, we mean without “zero divisors”.

This ring, which is commutative if, and only if, % is
a field of constants, still is a left and right principal
ideal ring [5].

1.3. All modules considered here are finitely gene-
rated left A[d/d¢]-modules.

Notation. The module spanned by the set w =
{wi,...,w,} is written [w].

1.4. An element m of a module M is torsion, if, and
only if| there exists = € k[d/d¢], m+0, such that nm =
0. A torsion module only contains torsion elements.
The set of all torsion elements of a module is a sub-
module, called the rorsion submodule. The next result
is well known [5]:

Theorem. A module is torsion if, and only if, its di-
mension as a k-vector space is finite.

1.5. A module is free if, and only if, its torsion sub-
module is trivial, i.e., equal to {0} 2. The following
theorem, which is classic [5], plays a crucial role.

Theorem. 4 module M can be written as a direct
sumM = TD O, where T is its torsion submodule and
D a free module, which is unique up to isomorphism.

1.6. The rank of a module M, which is written 7k(M ),
is the rank of the free module @: it is equal to the
cardinality of any basis of ®. A module is torsion if,
and only if, its rank is zero.

1.7. A (linear) system is amodule [10,12]. A (/inear)
dynamics [10] & is a system where we distinguish
a finite set u = {uy,...,un} of input variables such
that the quotient module D/[u] is torsion. The input
u is independent if, and only if, the module [u] is
free of rank m. We may also distinguish a finite set
y = {»is...,yp} called the output. See [10] for the
connection with state-variable representations.

1.8. A system A is controllable [10, 12} if, and only
if, the module A is free. A dynamics £ with input
u and output y is observable [10] if, and only if, the
two modules & and [u, y] coincide ([, v] denotes the
module spanned by the elements of u and y).

2 This characterization of free modules is valid for finitely gen-
erated modules over principal ideal rings, where any torsion-free
module is free [5].
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1.9. Assume that % is a field of constants, the field
R of real numbers for instance. Hidden modes, or
decoupling zeros, are related to a lack of controllability
and/or observability [3, 11, 19, 28].

The derivation d/d¢ induces a k-linear endomor-
phism 7 : T — T of the torsion submodule® of a sys-
tem A. The input decoupling zeros are the eigenvalues
of 7 over an algebraic closure k of & 3, 11].

Similarly, d/d¢ induces a k-linear endomorphism ¢ :
2/[u, ¥yl — 2/[u, y] of the quotient module Z/[u, y]
which is torsion. The output decoupling zeros are the
eigenvalues of ¢ over k [3, 11].

1.10. Assume now, that £k is the field R of real
numbers. The derivation k[d/d¢] induces an R-linear
endomorphism y : 2/[u] — 2/[u] of the torsion
module Z2/[u]. The poles (or system poles) of & are
the eigenvalues of u over the field C of complex
numbers. The dynamics & is said to be internally
stable if, and only :f, the real parts of its poles are
strictly negative. Choose an output y = (yi,..., yp).
The dynamics & is said to be input—output stable if,
and only if, the poles of [y, u], viewed as a dynamics
with input u, have strictly negative real parts.

The poles of system (1), for instance, are 1 and —1.
It is not internally stable. Since it is observable, it is
neither input—output stable. System (2), the poles of
which are also 1 and — 1, is again not internally stable.
But the only pole of [u, y] is —1, hence system (2) is
input—output stable.

1.11. The ring k[d/d¢] verifies the Ore property [5],
and therefore possesses a skew quotient field £(d/d¢).
The transfer vector space [14] of a system A is the ten-
sor product A = k(d/d¢) ® A which is a left k(d/d?)-
vector space. The rank of A and the dimension of A
coincide. The transjer matrix [14] is related to A.
Take two systems A, A3 such that A, C A,; then /il
coincides with /iz if, and only if, the quotient module
A, /A, is torsion.

2. Fibered sums and interconnections

2.1. Consider a family of modules M,, o € 4. Let
E be a given module such that, for any « € 4,
there exists a morphism %, : E — M,. Define the
submodule & of the cartesian product X,y M,
as being spanned by the elements of the form

3 According to Section 1.4, this module is a finite-dimensional
k-vector space.

Y
]

— D
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—
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Fig. 4. Parallel interconnection.

(..,0,....hy(e),...,0,...,—hy(e),...,0,...),e € E,
o) 0. The quotient module X ,c4M,/& is called the
fibered sum (or the amalgamated sum, or the co-
product) of the M,’s (see, e.g., [23, 24]). It is written

HxGA,EMO"

2.2. When the M,’s are regarded as linear systems,
the above fibered sum is called a (system) intercon-
nection. Note that, like in the behavioral approach
[7, 32], interconnections are defined without distin-
guishing between system variables.

2.3. Consider two dynamics, 2,2 with inputs
u="{u,...,un}, #={ay,..., a5}, and outputs
y={yi..yp}, ¥= {)7,,...,)'/;)}. Assume that
m = m, u = i, and consider the usual parallel inter-
connection in Fig. 4.

Consider the free module [§] = [J1,..., dn] of rank
m and the two canonical isomorphisms ¢: [d] —
[u),0s — us,s = 1,...,m,p : [0] — [#],0s — #s. &
is the submodule of Z x & spanned by the elements
of the form (@(d;), —®(ds)), s = 1,...,m. The above
parallel interconnection is represented by the corre-
sponding fibered sum which, for the sake of simplic-
ity, is written 2 [[,_. 2. This module, in practice, is
defined by the sets of equations defining & and 2,
plus the equation u = 7.

We might choose as an output of the parallel
interconnection any k-linear combination of the com-
ponents of y and j.

2.4, Assume that p = m, y = u. Consider the usual
series interconnection in Fig. 5.

Consider the free module [¢] = [ey,...,¢&p] of rank
p and the two canonical epimorphisms ¢ : [¢] —
e — v s = 1L...,p, ¢ 1 [e] — [u), & — us.
The above series interconnection is represented by the
corresponding fibered sum which, for the sake of sim-

plicity, is written 2 [ [,_; &. This module is defined
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u y=u_ - v
Fig. 5. Series interconnection.
v ~ y= y
— D e D -
;
y=w

D - .
y=u

Fig. 6. Feedback interconnection.

by the sets of equations defining 2 and Z, plus the

equation y = @i *,

2.5. Examples. The series interconnection in Fig. 1
(resp. in Fig. 2) isdefinedbya—u=i+ov, v =y—y
(resp.u=w—w=y+ y).

2.6. Take a third dynamics & with input #
{#,...,4x} and output j = {)71’”-:)7;;}- Consider
the classic feedback interconnection in Fig. 6.

The input # = v U w is divided into two parts. Set
¥y =u, y =i,y = w. Following the notations of Sec-
tions 2.3 and 2.4, the above block diagram corresponds
to the fibered sum ]| (2,9, %).

U=y, y=u,y=w

3. Some phenomena
3.1. Lack of controllability and observability

3.1.1. Interconnecting controllable (resp. observable)
lincar systems may give rise to an uncontrollable (resp.
unobservable) one (see, e.g., [4, 18] for calculations
in some concrete situations). When & = R, the corre-
sponding hidden modes (see 1.9) may exhibit positive
real parts which imply unstability. Uncontrollability
and unobservability, which both correspond to torsion
modules, cannot be detected by transfer functions (see
1.11).

3.1.2. Example. Consider in system (1) the variable
z = y+ y — u, which is torsion since z — z = 0. The
system is uncontrollable and the corresponding input

4 The variable y = # is assumed to have no physical meaning
in the input-output setting of [2].

decoupling zero, which is equal to 1, is unstable (see
Section 1.10).

3.1.3. Example. In system (2), the variable w, which
verifies W —w = u = y+ y, cannot be expressed as an
R-linear combination of «, y and of a finite number of
their derivatives.> It means unobservability of system
(2) (see [10]). The corresponding output decoupling
zero, which is again 1, is also unstable (see Section
1.10).

3.1.4. Example. Consider system (3), and write
T(s) = a(s)/b(s), S(s)=c(s)/d(s),a,b,c,d € R[s],
abed # 0; a and b (resp. ¢ and d) are coprime. The
system is governed by the two homogeneous equa-
tions

(5)e-n-(8):
d d
¢ (a‘z> v=e (a?)y

(i) Ifac+bd # 0, ie., ST # —1, y and v can be
calculated from u.

(i) If ac + bd = 0, i.e,, ST = —1, there exists a
constant 4 € R, 4 # 0, such that d = Aa,c = —/b.
The input » must satisfy a(d/d¢)u = 0 and becomes
a torsion element: system (3) is ill-posed [29]. The
remaining variables y and v, which are related by
a(d/dt)v + b(d/dt)y = 0, span a free module of rank
1 (because a and b are coprime, cf. [30, 14]). This
rather surprising lack of controllability concerns here
the control variable.

(3)

> The quotient module [u, y,w]/[u, ] is the torsion module
defined by w — w = 0, where w is the canonical image of w.
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Fig. 7. Feedback system (4).

3.2. Change of rank

3.2.1. The rank of a system module should be under-
stood as the maximum number of independent input
channels (cf. [9]). This rank is usually clear from the
physical context, but may exhibit some abrupt change
in some peculiar interconnections.

3.2.2. Example. The feedback system (4) depicted
in the block diagram in Fig. 7 differs from the one in
Fig. 3 by the suppression of u. The transfer functions
T(s) = a(s)/b(s),S(s) = c(s)/d(s) are the same as in
3.1.4. System (4) is governed by the equations

“(8)(3):
((2)-e(2)

There exists a canonical isomorphism [u, v, y}/[u]
— [0, ¥],v — b,y — », where u, v, y (resp. D, y) obey
to (3) (resp. (4)). It iraplies the following conclusions:

(1) If ac + bd # 0, ie., ST # —1, the module
{1, ¥] is torsion: 7 and y satisfy a linear homogeneous
differential equation.

(it) If ac + bd = 0, i.e,, ST = —1, the module
[7, ¥] is free of rank 1: ¢ and y are not determined
by linear homogeneous differential equations. System
(4) is again ill-posecl: when assigning to ¥ (resp. )
an arbitrary value, i.¢., an arbitrary function, y (resp.
) can be calculated from (4).

<

4

4. Conclusion

Even in the general noncommutative case, the ring
k[d/dt] is left and right Euclidian (cf. [5]). This ren-
ders calculations in modules very similar to what is
already known in the polynomial approach to linear
time-invariant systerrs. It should therefore be possible
to check a large-scale interconnection by computer al-
gebra. Discrete time, as well as delays, may be treated

along the same lines by employing the formulation of
[13,17,25].

The converse problem of decomposing a given lin-
ear system into “simple” parts should also be consid-
ered. Symmetries (see [6, 8]) might be useful in that
aspect.
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Appendix: A bridge with the behavorial approach

A.l. For the sake of simplicity, we restrict our-
selves, like in [12], to constant linear systems, i.¢., we
assume that £ = R. We first recall [12] how traject-
ories are related to a module-theoretic standpoint.
Denote by C°(¢),;) the set of C°°-functions
(t1,5) — R, where —co<t) £ < + 00; C™(ty, 1)
possesses a canonical structure of R[d/d¢]-module.
The trajectories on the time interval (#1,%) of a con-
stant linear system M, i.e., of a finitely generated
R[d/dt]-module M, is the set Hom(M, C>(¢,1))
of morphisms between the two R[d/d¢]}-modules M
and C*°(f1,); Hom(M, C>(11,1;)) also possesses a
canonical structure of an R[d/dz]-module.

A2, Let f: M; — M, be an R[d/d¢]-module mor-
phism between the two systems M) and M,. It yields
an R[d/d¢]-module morphism

i Hom(M, C*=(t,1,)) — Hom(M;, C=(t1,1,))
defined by

Vi € Hom(M,, C®(t),1)), fft=1f. (A.1)
One easily verifies that if f is injective (resp. surjec-
tive), f* is surjective (resp. injective).

A3. We now need some elementary facts from
category theory (see, e.g., [23,24]). A category ¥ is a
collection of objects. Between each pair 4, B of ob-
jects in %, there is a set Homg(4, B), or Hom(4, B), of
€-morphisms. In the category of R[d/d¢]-modules,
for instance, the morphisms are the R{d/d¢]-linear
mappings.
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A4, A contravariant functor F between two cate-
gories ¥ and & assigns to each object 4 in ¥ an ob-
ject F(A4) and to each ¥-morphism ¢ : 4 — B a -
morphism F(¢@) : F(B) — F(A). Note the reversed
order.

Example. Consider Hom(e, C>(¢;,¢,)), where the
point e denotes an arbitrary finitely generated R[d/d¢]-
module. It is a contravariant functor since it associates
to each finitely generated R[d/dz]-module M the
R[d/d¢]-module Hom(M, C*°(¢,, £;)) and to each mor-
phism M| — M; a morphism Hom(M;, C>®(t), 1)) —
Hom(M;, C°°(¢t),5,)) via (A.1).

The fibered product may be defined as the fibered
sum in Section 2.1 by reversing the arrows. The
image of the fibered sum (resp. product) under
a contravariant functor is a fibered product (resp.
sum).

A.5. Take, as in 2.1, ‘the fibered sum M; [[M; of
two systems with respect to the morphisms 4; : £ —
M;, i = 1,2. Since the functor Hom(e, C*°(1),1,))
is contravariant, we know from Section A.4 that

Hom (M| [ M3, C™(#1,12))

is the fibered product of Hom(M,,C*(t,5)) and
Hom(M,, C*°(#,, ;) with respect to the morphisms

K} : Hom(M;, C*(t1,12)) — Hom(E, C**(11, 1)),
i=1,2

We thus recover the behavorial interpretation of inter-
connection given in [7].
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