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Abstract

The structural properties of linear periodic discrete-time systems are analyzed in the periodic polynomial representation.

It is shown that the classical polynomial approach for linear time-invariant systems can be extended to periodic systems.

New de�nitions and properties are given in terms of skew polynomial rings and periodic di�erence algebra. Necessary and

su�cient conditions for the characterization of reachability, controllability, observability and reconstructibility are given

in this framework. c© 1998 Published by Elsevier Science B.V. All rights reserved.
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1. Introduction

Linear periodic discrete-time (LPDT) systems have been receiving a lot of attention because of the large

variety of plants which can be modelled through such a description (see e.g., [19, 20] and related references).

Generally, as far as analysis of structural properties is concerned, the state space representation is well suited

for linear time-varying (LTV) systems, since all of these properties can be de�ned in this framework [21, 24].

As a matter of fact, necessary and su�cient conditions for complete or h-step reachability and observability

of LPDT systems have been characterized in this approach by a rank condition [17, 9, 10]. The use of

linear time-invariant (LTI) associated systems, obtained by the technique of shift operator [19, 13] and cyclic

transformation [23], are another e�cient tool for such analysis. Modal observability and reachability have also

been characterized using a Gramian matrix in [1]. A transfer matrix approach has been developed for the

study of LPDT feedback of detectable and stabilizable systems [16, 8]; the transfer matrix under consideration

is that of the LTI system obtained using the shift operator. However, as is well known, problems such as loss

of reachability or observability cannot be taken into account in a transfer matrix formulation [15, 3].

The aim of this paper is to study various structural properties of LPDT systems in their periodic poly-

nomial matrix description (PMD) [21], which includes the periodic state space framework as a special
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case. The particularity of such systems – as it will be shown below – is that they are de�ned over a non-

commutative, non-integral and non-principal ideal ring R, the ring of periodic polynomials. Such a ring is very

“exotic”; thus, before giving the characterizations of structural properties of LPDT systems, a preliminary study

of some algebraic properties of R is necessary.

The paper is organized as follows: in Section 2, some preliminaries and notations are presented. In Sec-

tion 3, some mathematical results on algebraic properties of R are given. In particular, a ring-isomorphism

between R and a ring MR of polynomial and structured matrices is established. As R is not a Bezout ring,

the notions of weak and strong coprimeness of a pair of polynomials in R are introduced, and a necessary

and su�cient condition is given for these properties to be equivalent. In Section 4, the above results are used

to give a periodic PMD characterization of all structural properties of LPDT systems in terms of periodic

PMDs. Section 5 is reserved for concluding remarks and Section 6 to appendices.

2. Notation and preliminaries

2.1. Notation

:= equals by de�nition

Z (resp. N) set of integers (resp. non-negative integers)

R �eld of real numbers

S set of real-valued sequences de�ned over Z

0S (resp. 1S) zero (resp. unit) element in S

a(n) value of a sequence a belonging to S at time n

a(k) sequence belonging to S de�ned by a(k)(n)= a(n+ k); k ∈N

SN subset of S of N -periodic real-valued sequences (a∈ SN ⇔ a(N )= a)

q the usual forward-shift operator

� := qN

A[q] ring of all polynomials in q over A (where A is any ring)

A
p×m set of p×m matrices (p;m∈N

∗) with entries belonging to the ring A

A[q) ring consisting of quotients p(q)=qn; p(q)∈A[q]; n∈N

M :=R[�]N×N

M
R

the subring of M consisting of all polynomial matrices M (�) such that M (0) is upper

triangular

MT transpose of a matrix M

Mi; j (i; j) entry of the matrix M

e(q) := [1 q : : : qN−1]T

diag(a1; : : : ; aN ) diagonal matrix with a1; : : : ; aN on the diagonal

IN identity matrix of dimension N

SN [[q
−1]] ring of all formal series of the form f(q)=

∑

∞

i=0 q
−ifi ; i∈N and fi ∈ SN

2.2. Preliminaries

2.2.1. Ring of periodic sequences SN

With the usual elementwise addition and multiplication of sequences, SN is a commutative and unit ring; a

non-zero element a of SN is invertible if and only if (i�) a(n) 6=0, for every integer n; 06n6N − 1; and a

is non-zero divisor i� it is invertible; hence SN is not an integral ring.

2.2.2. The skew polynomial ring R

The ring of N -periodic polynomials is R := SN [q]; every non-zero element f(q) in R is a polynomial of

the form

f(q)= a0 + a1q+ · · ·+ anq
n; ai ∈ SN and an 6=0s; (2.1)
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moreover, the “commutation” rule, between the indeterminate q and elements of SN , is expressed by

qkai= a
(k)
i qk (2.2)

for any ai ∈ SN and k ∈N. The interpretation of this commutation rule is clear.

By the N -periodicity of the elements of SN , one has qNai= aiq
N , i.e., �ai= ai�.

R is called the ring of skew 2 polynomials in q over SN determined by Eq. (2.2) [5].

2.2.3. Some particularities of R

R is not an integral ring (as SN is not so); therefore, it does not possess a quotient �eld, and many other

properties of usual polynomial rings are lost. We will see below (a counterexample is given in Appendix

A.2) that R is not a Bezout ring; consequently, it is not a principal ideal ring. This means in particular that

weak and strong coprimeness of polynomials over R (here-below de�ned) do not coincide.

R is not an Euclidean ring: for every non-zero polynomial f(q) of the form (2.1), set �(f)= n and

�(0)=−∞; � is only a valuation but not a degree function, because the following inequality can

be strict:

�(f · g)6�(f) · �(g):

2.2.4. Coprimeness in R

De�nition 2.1. (i) Two periodic polynomials are weakly left (resp. right) coprime in R i� all their common

left divisors (cld’s) [resp. all their common right divisors (crd’s)] in R are unimodular. 3

(ii) A pair (a(q); b(q)) of polynomials is strongly left (resp. right) coprime in R i� a(q)R+ b(q)R = R

(resp. Ra(q) +Rb(q) = R).

Strong coprimeness implies weak coprimeness, but the converse is true only over a Bezout ring [3].

2.2.5. Particular rings of periodic polynomial matrices

Set M := SN [�]
N×N ; the value of a matrix F(�) at time n; (n∈N), is denoted by F(�; n). Obviously

F(�; n) is in M. The following proposition can be easily deduced from the fact that M is a principal ideal

ring [5].

Proposition 2.1. M is a principal ideal ring (but it is not integral).

Let MR be the set of N ×N polynomial matrices in � over SN ; F(�; n), such that there exists a matrix

F0(�) in M
R
such that

F(�; n)=Pn(�)F(�; 0)P−n(�); (2.3)

where

P(�)=

[

0 IN−1
� 0

]

; P−1(�)=

[

0 �−1

IN−1 0

]

with F(�; 0)=F0(�).

The reason for de�ning such a set MR is explained by Lemma 3.1 below, which was proved in [12]. The

following proposition is obvious.

2 Here, skew means that the elements of SN do not commute with the indeterminate q.
3 As usual, an element of R is said to be unimodular i� it is invertible in R. Note that an unimodular element in R is not necessarily

an element of SN ; for example, consider the polynomial f(q)=f1q + f0 over R := S2[q], with f1 ≡ (0; 1); f0 ≡ (1; 1) i.e., f1(n)= 0

(resp. 1) if n is even (resp. odd) and f0(n)= 1 for every n; the polynomial f(q) has an inverse in R, f(q)−1 = f̃1q + f0 where

f̃1 ≡ (0;−1). One indeed has f(q) · f(q)−1 =f(q)−1 · f(q)= 1S .
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Proposition 2.2. MR is a subring of M.

3. Algebraic properties of R

As for a LTI system [18, 15, 2], we will see in Section 4 that the basic algebraic properties of a LPDT

system, such as controllability and reachability, are essentially linked to coprimeness. Therefore, the aim of this

section is (i) to give a method to study the coprimeness of a pair (a(q); b(q)) in R via a ring-isomorphism W

from R onto MR (Proposition 3.1); (ii) to discuss what can be said about coprimeness of a pair (a(q); b(q))

in R and its associated image (A(�); B(�)) in M by the ring-isomorphism W, [in particular, it is proven

that weak coprimeness over M and over MR are not equivalent (Propositions 3.2 and 3.4)]; (iii) to give a

necessary and su�cient condition under which the weak coprimeness of a pair (a(q); b(q)) in R is equivalent

to its strong coprimeness (Theorem 3.1).

Proposition 3.1. There exists a ring-monomorphism W:R→M, de�ned by W(f(q))=F(�), where the

matrix F(�) is determined by the following relation:

e(q) · f(q)=F(�) · e(q); (3.1)

[see an example of construction of F(�) from f(q) in Appendix A.1]. The image of R by W is MR (so

that W can be viewed as a ring-isomorphism from R onto MR).

Proof. A similar ring-monomorphism W has been widely used in the transfer matrix approach (see, e.g.,

[19, 16, 8]); moreover, to see that the image of R by W is MR, let us recall the following result given in

[12] for periodic transfer matrices and also applicable to periodic polynomial matrices.

Lemma 3.1. For any matrix F(�) in M satisfying (3.1) and any integer n,

F(�; n+ 1)=P(�)F(�; n)P−1(�) (3.2)

with

P(�)=

[

0 IN−1
� 0

]

; P−1(�)=

[

0 �−1

IN−1 0

]

:

Remark 3.1. Clearly every matrix in MR is entirely de�ned by its �rst row, and so are also all coe�cients

of its inverse image in R.

Proposition 3.2. Let A(�); B(�) be two matrices in M
R
, 4 and assume that the pair (A(�); B(�)) is left

(resp. right) coprime in M. 5 Then the three following conditions are equivalent:

(i) the pair (A(�); B(�)) is strongly left (resp. right) coprime in M
R
, 6

(ii) the pair (A(0); B(0)) is strongly left (resp. right) coprime in M
R
,

(iii) for every i; 16i6N , (A(0)i; i ; B(0)i; i) 6=(0; 0).

Proof. We consider the left coprimeness only, because for the right one the rationale is completely analogous.

“(i) ⇔ (ii)”. Obviously (i) implies (ii); moreover, the left coprimeness of the pair (A(�); B(�)) in M means

that there exist two matrices X0(�); Y0(�) in M such that

A(�)X0(�) + B(�)Y0(�)= IN (3.3)

4 Recall that such matrices are independent of time.
5 As M is a principal ideal ring, the notions of strong and weak coprimeness are equivalent and have not to be distinguished.
6 Left coprimeness in M

R
(or in any ring) has a de�nition similar to that in R (see De�nition 2.1).



Y. El Mrabet, H. Bourl�es / Systems & Control Letters 33 (1998) 241–251 245

the parametrization of the general solution of Eq. (3.3) is given by [18]

X (�)=X0(�) + B̃(�)Q(�);

Y (�)=Y0(�)− Ã(�)Q(�);
(3.4)

where Q(�) is any matrix in M, the pair (Ã(�); B̃(�)) is right coprime in M and satis�es the relation

A(�)B̃(�)=B(�)Ã(�). By hypothesis the pair (A(0); B(0)) is strongly left coprime in M
R
, i.e., there exist two

matrices X1; Y1 in M
R
such that

A(0)X1 + B(0)Y1= IN : (3.5)

Moreover, there exists a matrix Q1 in M such that

X1=X0(0) + B̃(0)Q1; Y1= Y0 − Ã(0)Q1:

To obtain a solution of Eq. (3.3) in M
R
, one can choose in Eq. (3.4) any matrix Q(�) in M such that

Q(0)=Q1.

“(ii)⇔ (iii)”. Set �=0 in Eq. (3.3); it is easy to see that the condition (iii) is necessary for this equation to

have a solution in M
R
; hence, (ii) implies (iii). Conversely, let us prove by induction that (iii) implies (ii).

For N =1; R=R[q] and the result is obvious. Now assume that (iii) implies (ii) for some integer N , and let

us prove that this property is still true for N +1. Let A(0) and B(0) be two upper triangular (N +1)× (N +1)
matrices, hence of the form

F(0)=

[

f1 f2 : : : fN+1

0 F1(0)

]

(3.6)

where F(0)=A(0) or B(0), and F1(0) is a N ×N upper triangular matrix. The question is whether there exist

two matrices X (0) and Y (0) of the form (3.6), solutions of Eq. (3.5), where N is replaced by N + 1. This

equation is equivalent to the two following ones:

A1X1 + B1Y1= IN ; (3.7)

a1xi + b1yi=−[a2 : : : aN+1]X
(i−1)
1 − [b2 : : : bN+1]Y

(i−1)
1 ; (3.8)

where 26i6N+1 and X
(i−1)
1 (resp. Y

(i−1)
1 ) is the (i−1)th column of X1(0) (resp. Y1(0)). From the hypothesis

of the induction rationale, Eq. (3.7) admits a solution (X1(0); Y1(0)) in M
R
. In addition, the N independent

equations (3.8) admit always solutions (xi ; yi), because (a1; b1) 6=(0; 0). Hence, the result is proved.

Remark 3.2. It is clear that condition (iii) of Proposition 3.2 is always satis�ed in case of non-reversible

systems (in LTI sense); consequently, this condition is not satis�ed only for a class of non-reversible systems

(by Proposition 3.4 below).

Proposition 3.3. MR, and consequently M
R
are neither left nor right Bezout rings. 7

Proposition 3.4. Let (A(�); B(�)) be a pair of weakly left (resp. right) coprime matrices in MR. If this pair

is not strongly left (resp. right) coprime in MR, then the three following conditions hold:

(i) There exists at least one integer n; 06n6N − 1 such that A(0; n)N;N =B(0; n)N;N =0.

(ii) There exists at least one integer n, such that pair (A(�; n); B(�; n)) is not left (resp. right) coprime

in M.

7 A counterexample is given in Appendix A.2. Recall that a left (resp. right) Bezout ring is a ring where any �nitely generated left

(resp. right) ideal is principal.
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(iii) For every integer n, Cn(�)= gcld(A(�; n); B(�; n)) (resp. gcrd) in M has a determinant of the form

��k ; �∈R− {0}; k¿0.

Proof. This proof is given for the left coprimeness case.

(i) Let (A(�); B(�)) be a pair of weakly but not strongly left coprime matrices in MR; then, there exists

at least one integer i such that the pair (A(�; i); B(�; i)) is weakly left coprime in M
R
but not strongly left

coprime in M
R
. So by Proposition 3.2 there exists an integer j; (16j6N ) such that A(0; i)j; j =B(0; i)j; j =0.

Now from Lemma 3.1 we have

A(�; i + N − j)=PN−j(�)A(�; i)P−(N−j)(�); B(�; i + N − j)=PN−j(�)B(�; i)P−(N−j)(�): (3.9)

Moreover, let C =(Ci; j)N×N be any upper triangular matrix, and set D=P(�)CP−1(�). It can be easily veri�ed

that Di; i=Ci+1; i+1 if 16i6N − 1 and DN;N =C1;1.

So if j 6=N , for n= i + N − j we have

A(0; n)N;N =A(0; i)j; j =0 and B(0; n)N;N =B(0; i)j; j =0:

(ii) Moreover, as A(�; n) and B(�; n) belong to M
R
, we deduce that the last rows of these matrices

are multiples of �. Hence, the matrix C(�)= diag(1; 1; : : : ; �) is a non-unimodular common left divisor of

(A(�; n); B(�; n)) in M.

(iii) Let Cn(�) be a gcld of A(�; n) and B(�; n) and write A(�; n)=Cn(�)A
′

n(�), B(�; n)=Cn(�)B
′

n(�). Using

usual elementary column operations, Cn(�) can be chosen such that Cn(0) is upper triangular (Hermite form),

i.e., belongs to M
R
.

If the determinant of Cn(�) is not a multiple of �, then Cn(0) is invertible. As a result, A
′

n(0)=Cn(0)
−1A(0; n)

and B′n(0)=Cn(0)
−1B(0; n) are upper triangular, i.e., A′n(�) and B′n(�) belong to M

R
. Therefore, the pair

(A(�); B(�)) cannot be weakly left coprime in MR.

If the determinant of Cn(�) has a non-unit-divisors di�erent from �; this matrix can be factored out (using,

e.g., the Smith form) as Cn(�)=Dn(�)En(�), where the determinant of Dn(�) is not a unit and is not a

multiple of � and where the determinant of En(�) is a power of �. One can write

A(�; n)=Dn(�)A
′′

n (�) and A(�; n)=Dn(�)B
′′

n (�):

Dn(�) is not unimodular and Dn(0) is invertible. By the same rationale as above, in this case again (A(�); B(�))

cannot be weakly left coprime in MR, and the corollary is proved.

Theorem 3.1. Let (A(�); B(�)) be a pair of weakly left (resp. right) coprime matrices in MR; the pair

(A(�); B(�)) is strongly left (resp. right) coprime in MR i�, for all integers n, the pair (A(0; n); B(0; n))

satis�es the condition (iii) of Proposition 3.2.

Proof. This proof is given for the left coprimeness case.

“⇐”. If for every n; 06n6N − 1, the pair (A(0; n); B(0; n)) satis�es the condition (iii) of Proposition 3.2,
then by this Proposition one deduces that the pair (A(�; n); B(�; n)) is strongly left coprime in M

R
for every

n, and consequently the pair (A(�); B(�)) is strongly left coprime in MR.

“⇒”. Now suppose that (A(�); B(�)) is strongly left coprime in MR and that there exists at least one integer

n such that (A(0; n); B(0; n)) does not satisfy the condition (iii) of Proposition 3.2. From Proposition 3.4 the pair

(A(�; n); B(�; n)) is not strongly left coprime in M
R
; this contradicts the hypothesis that the pair (A(�); B(�))

is strongly left coprime in MR.

The following result is immediately clear from Proposition 3.2.

Corollary 3.1. A pair (A(�); B(�)); as in Theorem 3.1, is strongly left (resp. right) coprime in MR i� it is

so in M.
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4. Algebraic properties of LPDT systems

Consider the polynomial description of a monovariable LPDT system D

d(q)�= n(q)u; (4.1)

y= t(q)�+ w(q)u; (4.2)

where d(q); n(q); t(q), and w(q) belong to R, and d(q) is assumed to be non-zerodivisor. 8

The de�nition of reachability (resp. observability) used for the propositions below is the complete (h-step)

reachability [resp. complete (h-step) observability] de�ned in [24, 21] in the state space representation, and

reformulated in a polynomial representation in terms of coprimeness of polynomial matrices for LTI systems

in, e.g., [2, 15].

Theorem 4.1. (i) D is reachable i� the pair (d(q); n(q)) is strongly left coprime over R.

(ii) D is observable i� the pair (d(q); t(q)) is strongly right coprime over R.

Proof. (i) “⇐”. If the pair (d(q); n(q)) is strongly left coprime, then (by Corollary 3.1) so is the pair
(D(�); N (�)), its associated image by the ring-isomorphism W in MR. Consequently, the N LTI equivalent

systems associated with D de�ned by the following two equations are reachable:

D(�; n) = N (�; n)U; (4.3)

Y = T (�; n) +W (�; n)U; (4.4)

where 06n6N −1; D(�)=W(d(q)); N (�)=W(n(q)); T (�)=W(t(q)); W (�)=W(w(q)), From Ref. [14]

D is also reachable.

“⇒”. Conversely, if D is reachable then the N -LTI equivalent systems associated with D and de�ned by

Eqs. (4.3) and (4.4) are reachable [14]. Consequently, for every integer n; 06n6N − 1, the pair (D(�; n);
N (�; n)) is left coprime in M. By Corollary 3.1 one deduces that the pair (d(q); n(q)) is necessarily strongly

left coprime in R.

By duality the second property of this Theorem can be deduced from the �rst one.

Before giving a characterization of controllability and reconstructibility for LPDT systems, recall the fol-

lowing result which concerns discrete LTI systems: consider a LTI system

D(�)�=N (�)u; (4.5)

y= T (�)�+W (�)u; (4.6)

where D(�)∈Rn×n[�]; N (�)∈Rn×m[�]; T (�)∈Rp×n[�] and W (�)∈Rp×m[�]; D(�) is assumed to be full

rank, i.e., non-zero divisor.

Lemma 4.1 (Blomberg and Ylinen [2]). (i) The system (4.5), (4.6) is controllable i� the pair (D(�); N (�))

is left coprime over R[�).

(ii) The system (4.5), (4.6) is reconstructible i� the pair (D(�); T (�)) is right coprime over R[�).

To generalize this result to LPDT systems taken in their periodic PMD, one can try, at �rst sight, to

search for a link with the coprimeness notion over SN [q). By the example given below, one shows that in

this context, the reconstructibility and controllability notions are expressed only by su�cient conditions, and

to have necessary and su�cient conditions, we use the fact that the controllability (resp. reconstructibility)

criterion of a LPDT system is expressed in terms of necessary and su�cient conditions of controllability

8 Obviously, a periodic polynomial a(q) is left (or right) non-zerodivisor i� so is A(q), its associated image by W in MR.
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(resp. reconstructibility) of at least one associated LTI system. We also use the fact that controllability (resp.

reconstructibility) of LTI systems is characterized by Lemma 4.1. A new ring – deduced from R by a

localization [5] – is introduced, in a natural way. The above structural properties are characterizable, over this

ring, in terms of weak coprimeness.

For this, let us consider the subset of MR de�ned by

Mu= {M ∈MR | det(M)= ��n; �∈ SN − {0}; n∈N}

and let U be the image of Mu by the ring-isomorphism W
−1. Let Ru=U

−1 ·R (=R ·U−1) be the localizing
set [5] of R in U. By de�nition, Ru is the ring consisting of all elements of the form a−1b or b′a′−1, where

a and a′ belong to U and b and b′ belong to R.

Controllability and reconstructibility criteria of a LPDT system D given by its periodic polynomial repre-

sentation (4.1), (4.2) are given by the following theorem.

Theorem 4.2. (i) D is controllable i� the pair (d(q); n(q)) is weakly left coprime over Ru.

(ii) D is reconstructible i� the pair (d(q); t(q)) is weakly right coprime over Ru.

Proof. (i) “⇐”. If the pair (d(q); n(q)) is weakly left coprime over Ru, by construction of Ru, so is the pair

(D(�); N (�)) – its associated image by the ring is isomorphism W – over SN [�). Hence, from Proposition 3.4,

the pair (D(�; n); N (�; n)) is weakly left coprime over R[�) for every integer n. This implies that the N -LTI

associated systems of D are controllable, therefore [11] D is controllable.

“⇒”. Conversely, if D is controllable then the N -LTI equivalent systems associated with D and de�ned by

Eqs. (4.3) and (4.4) are controllable [11]. Consequently, for every integer n; 06n6N − 1, the pair (D(�; n);
N (�; n)) is left coprime over R[�). By construction of Ru one deduces that the pair (d(q); n(q)) is necessarily

left coprime over Ru.

The property (ii) can be deduced from (i) by duality.

Example. Take the 2-periodic di�erence equation

{q3 + d2q
2 + d1q}y(k)= {n1q+ n0}u(k) (4.7)

with d2 ≡ (2; 1); d1 ≡ (1; 0); n1 ≡ (1; 5); n0 ≡ (1; 0) (see footnote 3).
Let us verify at �rst that Eq. (4.7) de�nes a (periodic) system i.e., the polynomial d(q) is a non-zero

divisor and d−1(q) · n(q) belongs to S2[[q
−1]], 9 where d(q)= q3 + d2q

2 + d1q and n(q)= n1q+ n0.

Let D(�) (resp. N (�)) be the image of d(q) (resp. n(q)) by W; one obtains

D(�) =

[

d2� d1 + �

d
(1)
1 �+ �2 d

(1)
2 �

]

and N (�) =

[

n0 n1

n
(1)
1 � n

(1)
0

]

:

It is not di�cult to see that D(�) is a non-zero divisor, thus by applying the ring-isomorphism W
−1, one

deduces that d(q) is also a non-zero divisor in R.

By relation (3.1) one can deduce that

d−1(q) =
1

2
[1 q−1] · D−1(�) · e(q) =

1

�2(�− 1)
{q3 − d

(1)
2 q2 + d1q};

hence,

d−1(q) · n(q) =
1

�2(�− 1)
{q3 − d

(1)
2 q2 + d1q}{n1q+ n0}

=
1

q4(q2 − 1)
{n(1)1 q4 + (n

(1)
0 − d

(1)
2 n1)q

3 + (d1n
(1)
1 − d

(1)
2 n0)q

2 + d1n
(1)
0 q};

9 This condition is imposed to ensure the causality condition for the system de�ned by Eq. (4.7).
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thus d−1(q) · n(q) belongs to S2[[q
−1]]. Now we show that system (4.7) is controllable without having the

comprimeness of the pair (d(q); n(q)) over SN [q).

The N -LTI systems associated to Eq. (4.7) are given by

D(�; n)Y =N (�; n)U

and the matrices D(�); N (�) can be decomposed in MR as follows:

D(�) =

[

d1 1

� d
(1)
1

] [

� 1

� �

]

= L(�)D′(�);

N (�) =

[

d1 1

� d
(1)
1

]

n1 = L(�)N ′(�):

(4.8)

In addition, det(L(�; 0))=d1d
(1)
1 − �= − �=det(L(�; 1)) and the pair (D′(�); N ′(�)) is left coprime in M.

So the 2-LTI systems associated with Eq. (4.7) (and consequently Eq. (4.7)) are controllable, although

(d(q); n(q)) is not left coprime over S2[q); indeed by applying W
−1 to Eq. (4.8), one obtains

d(q)= {q+ d1}q{q+ 1};

n(q)= {q+ d1}n1:

5. Concluding remarks

In the present work, the polynomial approach has been developed for the study of algebraic properties

of LPDT systems. In the authors’ opinion, this approach clari�es the subject. As a matter of fact, it shows

that reachability and observability are dependent on time only for a class of non-reversible systems; and

consequently, a wide class of LPDT systems are “index invariant”. Notice that, in the polynomial description

(4.1), (4.2) of D, the only hypothesis is that d(q) is non-zero divisor, hence this study can be applied to LPDT

descriptor systems, i.e., those for which the highest order coe�cient of d(q) is not invertible in SN [d(q) is

not necessarily an admissible (or monic) polynomial]. According to the usual terminology, such LPDT systems

have an order which is dependent on time.

Although we have focused on SISO systems, most of the results presented here have a straightforward

extension of MIMO systems.

Our approach has connections with Fliess’ module theoretic standpoint [6, 7, 4]. As a matter of fact, from

Theorem 4.1, a LPDT system is reachable i� its associated R-module is projective [22]. In addition, a stronger

condition is the freeness of this module, which is equivalent to the existence of a doubly coprime factorization.

These extensions and the use of the module language will be the subject of a forthcoming paper.

Appendix A

For the following examples, the period is N =2; R= S2[q]; and for every element a in S2, set by convention

a ≡ (a(0); a(1)) where a(i) is the value of the sequence a at time i (modulo 2), i=0; 1.

A.1. Image F(�) by W of a polynomial f(q) in R.

Let f(q) be a polynomial in R de�ned by

f(q)= a0 + a1q+ · · ·+ a7q
7; ai ∈ S2 and a7 6= 0S ;

[

1

q

]

· f(q) =

[

a0 + a1q+ · · ·+ a7q
7

(a
(1)
0 + a

(1)
1 q+ · · ·+ a

(1)
7 a7)q

]



250 Y. El Mrabet, H. Bourl�es / Systems & Control Letters 33 (1998) 241–251

=

[

a0 + a2�+ a4�
2 + a6�

3 a1 + a3�+ a5�
2 + a7�

3

a
(1)
1 �+ a

(1)
3 �2 + a

(1)
5 �3 + a

(1)
7 �4 a

(1)
0 + a

(1)
2 �+ a

(1)
4 �2 + a

(1)
6 �3

]

[

1

q

]

and

F(�) =

[

a0 + a2�+ a4�
2 + a6�

3 a1 + a3�+ a5�
2 + a7�

3

a
(1)
1 �+ a

(1)
3 �2 + a

(1)
5 �3 + a

(1)
7 �4 a

(1)
0 + a

(1)
2 �+ a

(1)
4 �2 + a

(1)
6 �3

]

:

A.2. A counterexample to show that R is not a Bezout ring, i.e., a pair (f1(q); f2(q)) in R is de�ned

below, which is weakly left coprime but not strongly left coprime.

Take f1(q)= �1q
2 + �1 and f2(q)= �2q

2 + �2q with �1 ≡ (1; 0); �1 ≡ (0; 1); �2 ≡ (0; 3); �2 ≡ (2; 1), and
take the images F1(�) (resp. F2(�)) of f1(q) (resp. f2(q)) by the ring-isomorphism W. One obtains

F1(�)=

[

�1�+ �1 0

0 �
(1)
1 �+ �

(1)
1

]

; F2(�) =

[

�2� �2

�
(1)
2 � �

(1)
2 �

]

and

F1(�; 0) =

[

� 0

0 1

]

; F2(�; 0) =

[

0 2

� 3�

]

:

The pair (F1(�; 0); F2(�; 0)) is left coprime in M, indeed, with the usual column transformations, one can

calculate matrices X (�); Y (�) in M

X (�) =

[

0 0

0 1

]

; Y (�) =

[

−3=2 0

1=2 0

]

such that

F1(�; 0)X (�) + F2(�; 0)Y (�)= I2: (A.1)

Moreover,

F1(0; 0) =

[

0 0

0 1

]

and F2(0; 0) =

[

0 2

0 0

]

and, from Proposition 3.2, Eq. (A.1) has a solution in M
R
i� there exist two matrices of the form

[

x y
0 z

]

and
[

x′ y′

0 z′

]

over R such that

[

0 0

0 1

] [

x y

0 z

]

+

[

0 2

0 0

] [

x′ y′

0 z′

]

=

[

1 0

0 1

]

:

Obviously this is impossible, so Eq. (A.1) has a solution in M but no solution in M
R
.

Now suppose that the pair (f1(q); f2(q)) is not weakly left coprime, i.e., there exists a non unimodular

polynomial d(q) in R, such that

f1(q)=d(q) · f′1(q) and f2(q)=d(q) · f′2(q);

consequently,

F1(�)=D(�) · F ′1(�) and F2(�)=D(�) · F ′2(�);

in particular,

F1(�; 1)=D(�; 1) · F ′1(�; 1) and F2(�; 1)=D(�; 1) · F ′2(�; 1): (A.2)
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From Lemma 3.1 and the relation (A.2) one can deduce

F1(�; 0)=P−1(�)D(�; 1)P(�) · P−1(�)F ′1(�; 1)P(�)

and

F2(�; 0)=P−1(�)D(�; 1)P(�) · P−1(�)F ′2(�; 1)P(�):

The pair (F1(�; 0); F2(�; 0)) is left coprime in M, so the matrix

P−1(�)D(�; 1)P(�)

is necessarily unimodular, in particular det(P−1(�)D(�; 1)P(�)) is a scalar and so is det(D(�; 1)); this implies

that D(�; 1) is an unimodular in M
R
. Thus, the pair (f1(q); f2(q)) is weakly but not strongly left coprime.

This completes the proof that R is not a Bezout ring.
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