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Abstract — A robust coordinated AVR/PSS, called the
"Desensitized Four Loops Regulator" (DFLR) has been
recently designed using the "desensitized control" theory.
Its synthesis method (which can be applied to other
problems than excitation control) and its structure are
detailed in this paper. It is a state feedback controller
inchiding an integrator on the regulation error. This
structure, although it is well known in the control
community, is not usual for excitation control of
generators (except in France). Hence, in order to make
this approach more widely applicable in an industrial
point of view, this controller is put, using approximations,
in the standard AVR+PSS structure IEEE ST1A+PSS1A.
The resulting AVR+PSS is proven to have a good

performance, in particular for damping inter-area
oscillations.
Keywords — AVR, PSS, Linear quadratic control,

Desensitivity, Inter-area oscillations .

1. INTRODUCTION

A. Excitation control of generators is a very important
topic in the field of power systems. A good excitation control,
indeed, has proven to be very efficient to support the voltage
on the power system, to enhance its transient stability and to
damp its oscillations (see, e.g., [2], [5], [17], [18], [14]). In
addition, this type of solution is much cheaper than heavy
equipments like FACTS which are necessary only in very
specific cases, as far as oscillation damping is concerned.

For damping oscillations, Automatic Voltage Regulators
(AVRs) are not sufficient, and using Power System
Stabilizers (PSSs) is necessary. Therefore, a good generator
terminal voltage controller should combine an AVR with a
PSS.

When designing an AVR+PSS, it is very important to take
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into account possible variations of the generator operating
point. As a matter of fact, perturbations like load variations
and line outages can occur. The AVR+PSS should not be
destabilized, and even should retain a sufficiently high level
of performance when those perturbations arise. In other
words, the AVR+PSS should be sufficiently robust against
system variations. It has been shown that for a combination of
an AVR with a PSS to be robust, both of them should be
coordinated [14], [9], ie., they should not be designed in an
independent manner.

A robust coordinated AVR/PSS has been recently
proposed [9]. This controller is called the "Desensitized Four
Loops Regulator" (DFLR) and has been designed using the
"desensitivity method" [13], [9]. It should replace the "Four
Loops Regulator" [5] which has been implemented on the
French power system for about 15 years.

The DFLR has been tested with EUROSTAG, a time
simulation software for stability studies [15], and with the
Electricité de France Transient Network Analyzer. It has
proven to be a high-performance and robust controller.
Representative time-domain simulations have been presented
in [9]; they show that the DFLR is better (and, in particular,
more robust) in the "single machine-infinite bus" case than a
classical AVR+PSS. Another advantage of the DFLR is that
the tuning of its parameters is very systematic and
straightforward.

B. In this paper, it is shown that the DFLR can be put,
using approximations, in the standard AVR+PSS structure
I[EEE STIA + PSS1A. These approximations do not
significantly deteriorate the performance of the controller.
Hence, our approach is widely applicable in an industrial
point of view. In addition, the resulting AVR+PSS is proven
to well damp the local and inter-area oscillations of a multi-
machine network.

C. The paper is organized as follows: the DFLR is
presented in Section. II, where the main ideas of [9] are
briefly recalled and some points which were not detailed are
explained, e.g., the model augmentation and the structure of
the DFLR. The design method proposed in Section II can be
applied to any system subject to "parametric uncertainties";
hence, this approach is relevant to many kinds of plants, in
particular in the field of power systems. In Section III, it is
shown how the DFLR can be put in the standard AVR+PSS
structure IEEE ST1A+PSS1A. In Section IV, the resulting .
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controller is analyzed (i) in case of three phase fault (for a
single machine - infinite bus system) and (ii) on a multi-
machine system where inter-area oscillations are observed
without PSS. The performance is good in both cases.
Section V is devoted to concluding remarks.

1I._A ROBUST COORDINATED AVR/PSS : THE DFLR

Although the design method proposed here is very general
(see Section 1.C), it is explained here in the specific case of an
AVR+PSS synthesis.

A. Basic linear model

The model which is considered for the design is the
classical system "single machine, infinite bus". This model is
linearized around an operating point defined by specific
values P*, V¥, q* and X* of the active power P, the terminal
voltage V, the reactive power q ! and the external reactance
X, respectively. That model is reduced to order 3 using the
balanced realization technique, which can be viewed as a
principal component analysis method for dynamical systems
[16]. For any signal £, let 3 denote the deviation of £ from
its steady-state value (when it exists). The state is chosen as
being z = [dV &P 60)]T, where o is the rotor speed; the
control u is SVE, where v, is the excitation voltage (see, e.g.,
[4], p. 203). The excitation system is assumed to be static.
The variable to be controlled can be written 8V = C z, with
C=[10 0].

Set ® = [P* V* g* X*]T; the matrices of the linearized
mode] depend on ©, ie., the differential equation of the
linearized system around the operating point ® is of the form

z=F(®)z+G(®)u ¢))

It is assumed that the vector of parameters ® is constant

with respect to time and unknown (thus, it is a considered as

random vector) but belongs to a known domain D, called the
"admissible parametric domain".

B. Augmented model [8]

Let V¢ be the terminal voltage set-point (which is
assumed to be constant). In order to meet the steady-state
objective, the plant model (1) is augmented with the
additional state e defined by

e=V_V. )

With the control synthesized below, e(t) tends to a
constant as t tends to infinity, thus the regulation error V(t) -
V_ tends to zero; as a result, the steady-state value of V(t) is
V so that 8V =V — V . In addition, as e is defined up to a
constant one can set Se =e.

The "augmented state" is x = [zT e]T. Equations (1), (2)
yield

! This notation is not classic, but it allows one to avoid a confusion with the
state weighting matrix (see (5)).
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x = A@®)x +B(®)u 3)

where (A(®), B(®)) is controllable [8] and is defined by

F@®) 0 G(®)

A®)=| ¢ ]B@) [ 0

C. Desensitivity

Desensitivity is a method for designing a robust controller
with respect to parametric uncertainties, ie., a controller
stabilizing system (3) with a suitable level of performance,
not only when © has its nominal value ®_, but for every © in
D. In order to clarify the main idea of desensitivity, it is
assumed in this section that ® is a scalar parameter 0
(although this is not true for the AVR+PSS design problem)
and that the control law is constrained to have the form

=-Kx C))

1) The state x is a function of t and 0, and so is also the

control u by (4), i.e.
x=x(t, 0), u=uft, 0)

Let 8, be a nominal value of 8. Desensitivity consists in
mmlmlzmg a quadratic index involving x () = x(t, 6),
u = u(t, 0 o) and also the partial derlvatlves £ = ng(t
80) and W (t) = Ogu(t, 0) (where dy denotes the partial
derivative with respect to 6); & (t) and p (1) are called the
"sensitivities".

This index is defined by

Jo= f [Xo(t)TQXo(t)+l uy(® [ +0? [ao(t)Tan(t) +| o) |2]:ldt(5)

where o is the variance of 0.

The minimization of the sensitivities ensures that the
"perturbed trajectories" x(t, 8) and u(t, 6) remain close to the
“nominal trajectories” x (t) and u/(t) when the current
parameter value 6 is slightly different (and, in practice, rather
different) from 6. In this manner, a good robustness of the
performance is obtained. The larger is o, the more weighted
are the sensitivities, and the more improved is the robustness.
The price to pay for this improvement, however, is a
deterioration of the performance, so that a good compromise
should be found.

2)  Differentiating (4) with respect to © yields
1, = — K & (1). Now, differentiating (3) with respect to 6
and using the latter equation and as well as (3) one obtains

d|X| _ 2 1% A

d =A +B, u

dt [ﬁo} OL»O] °

iT
AT T

x=Gf% &) ™
where the expressions of Ao,ﬁo,éo can be easily
determined; the two former matrices depend on K. Thus,

assuming that K is known, a controller can be synthesized for
system (6), (7) using the LQG theory [1]:

(6
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However, K is the controller gain matrix we want to
calculate, hence iterations should be used.

At step 0, a first gain matrix K is calculated, such that (4)
stabilizes the nominal system (3) (with ® = 0,). For this, the
classical LQ method [1] is used: the quadratic index (5) is
minimized with ¢ = 0; the matrix Q is chosen diagonal; K is
the gain of the non-desensitized L.Q regulator.

At step 1, the sensitivities are for the first time taken into
account by chcz)osing o>0 (see [9] for the general case, where
the variance o should be replaced by the covariance matrix =
of ® and where Kronecker products of matrices should be
used). The resulting quadratic index is minimized for system
(6), (7) with K replaced by K, using the LQG theory; the
order of the LQG controller then obtained in nonzero, hence
it is reduced to order zero2. In this manner, a first desensitized
controller with gain matrix K, is obtained.

Step 1 can now be repeated with K replaced by K, etc.
In this manner a sequence of gain matrices (K) is
determined. The procedure ends when K = K__ up to the
tolerance. The number of iterations does not generally exceed
about 10.

D. DFLR description
1) In what follows, all quantities are expressed in p.u.,

and o =1 (resp. 2.4) in the French (resp. IEEE) reference,
except for o which is in rad/s, and X includes the reactance of
the transformer. Let the admissible parametric domain D be:
P*=1, 09<V*<1.05,
—-1<g*¥<1, 02<X*<0.95

Notice that D is very large. The design point (i.e., the nominal

value of @) is chosen as being ® = [P* V* g* X*T=
[T 095 1 O.40]T. For the 800 MW generator considered
here, one has

-01151 -0.0852 ~0.0835 0 01267
-03013  -03730 00935 0 03331
A@)= , B(®) = (Vo)
~02237 ~292755 -00035 0 0.1227
1 0 0 0 0

Recall that the state is x =[5V 8P 80 ]! and that the input is
u=9oVv.,.

2) The matrix Q is chosen as being
Q = o’ diag(800, 0, 5, 200)

The idea leading to this choice is the following: basically,
only the states 8V —the variable to be controlled— and ¢ —
the output of the integrator— are weighted, in order to obtain
a good PI controller for the voltage regulation (i.e., a good

2 According to the authors" experience, that reduction to order zero does not
significantly disturb the closed loop dynamics, as far as AVR+PSS design is
concerned. However, in [9], that reduction to order zero is made at the final
step only. The latter method is more accurate. The reduction to order zero is
assumed to be made at each step here for the sake of simplicity.

proportionnal and integral AVR). The additional weight on
dw is rather small; its role is to slightly improve the damping
at the design point.

The controller gain matrix (for Z = 0) is

Ke=al 324 9.2 -1.85 14.1 ]

The robustness of this controller is not sufficient, because the
system is not stabilized in the whole admissible parametric
domain D. Therefore, this controller should be desensitized.

3) The covariance matrix of ® is chosen as being
2 2

» O, » Oy )
with o, =0 and 6_ = 0; o, and o are increased (starting from -
zero) until stability is obtained in the whole admissible
parametric domain D, with sufficient modulus and delay
margins (recall that the modulus margin is. the distance
between the Nyquist plot and the critical point —1 and that the
delay margin is the smallest unmodelled delay which makes
the closed loop unstable [6]). Note that this procedure is very
systematic: the standard deviation oy (6 = P, V, q or X)
should be increased while the largest possible deviation of the
parameter 6 in D from its nominal value 8 causes instability
(or, more precisely, insufficient modulus and delay margins).
Finally, o, and o, are found to be equal to 0.6 and 0.3,
respectively, and after some -iterations -the following
controller gain matrix is obtained:

A
K=a[323 179 337 132] = [K, K, K, K. ] (8)

2
Z = diag(o, , o

Notice that, in comparison with K,, the gains on 6P and dw
have been almost doubled, whereas the other gains are
roughly unchanged. See [7] for other remarks and more
details about the effect of desensitivity.

4) The block-diagram of the DFLR is shown in Fig. 13.
Notice that the active power P has been replaced by the
"accelerating power" P — P _, where P denotes the .
mechanical power supplied by the turbine.

Fig. 1 block-diagram of the DFLR

3 The shaft torsion oscillation filter presented in [10] can be connected in
series to the o-channel.



The block-diagram in Fig. 1 clearly shows that the DFLR
can be viewed as a coordinated AVR/PSS (in the sense
explained in Section 1.A); u,, can indeed be viewed as an
additional stabilizing signal. The gains K, K, K and K _are
constant.

1II. DETERMINATION OF THE STANDARD IEEE
STRUCTURE

A.The AVR

1) The structure of the IEEE STIA AVR is shown in
Fig.2. Its transfer function is (with Ty, =T, + T + K, K)
K,(1+sTy)
1+ Tys+ T, Tys>
Ve-Voooo K u

) a
14T,

AVRI(s) = )

s K,
1+5sT;

Fig.2 IEEE ST1A AVR

2) The transfer function of the AVR in Fig.1 is

K

AVR2(s) =K, + —% (10)
S

Its Bode plot is shown in Fig.3 (solid line), which shows how
AVR2(s) can be approximated by a transfer function of the
form

K,(1+ T¢s)
(1+ Tps)(1+ Tgs)
(dotted line) on a frequency band B = [ 1/T, , 1/T; ]. Finally,
it is easy to put AVR3(s) in the form (9).

AVR3(s) = (11)

Therefore, for putting the AVR in Fig.1 in the structure of the
AVR in Fig.2, the procedure is as follows (where all time
constants are expressed in seconds):

(i) choose the frequency band B, i.e., the time constants T,
and T; the frequencies are expressed in rad/s;

(ii) calculate

S Tp
T, T T, + T,) — (T, + T
T¢ Ke K,

Choosing Tp = 10 and T, = 1/400 and using the gain matrix
value (8), one obtains T, = 001, T, = 245, K, = a 136,
K, =0.055. Note the small value of T,, which corresponds to
the typical time constant of a fast exciter. As the delay

margin is good (= 75 ms, see Section I1.D.3), the controller is
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robust with respect to the actual value of the exciter, provided
that it is sufficiently small.

AVR BODE FREQUENGY RESPONSE
80 T T T T T

galn (dB)

10° 10" 10 10" 10 10
froquenay (Hz)

LI
TN

L S

%-50
-foe b — ”I-l — ”Iu ‘l' = lmlz Ha
10 10 10 19 10 10
frequency (Hz)
Fig.3 Bode diagram
B. The PSS

1) The structure of the IEEE PSS1A is shown in Fig.4
where P, denotes the accelerating power P, - P; the time
constant Ts is chosen much larger than the other ones (e.g,
Ts=30)*, so that its transfer function is roughly

1+Ts 1+T
PSSI(s) 2 K. — 18 ~ T8 (12)
1+T,s 1+T,s
K
Pa 1+ST; - 1+ST; S’]; Upss
1+sT, 1+5T, E 145,
Fig.4 IEEE PSS1A PSS
The signal u, acts as is shown in Fig.5
Ve
AVR(s) — U
PSSI(s) e Lo
Fig.5 Classical AVR+PSS

4 The value of Ts is not critical [12]; Ts=30 is the lowest upper bound of the
usual range [2, p. 339].
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2) The additional stabilizing signal in Fig.1 is
Uggg == [Ko + Ky (P=Pp)

Using the electromechanical equation (written in the Laplace
domain)

o(s) = E%I_s LAOM

one obtains

— ®
Uygd (8) = (K - %413[;) Py (). 13)
Therefore, one has ‘
U,q4(s) = PSS2(s) P,(s) , (14)
where, for a sufficiently large time constant © >0,
K
PSS2(s) =K, - ——2 . 15
529 =Ky 2H (s+1/71) (1)
The comparison of the figures 1 and 5 yields
Upss(8) = (AVR(S) 14 (S) - (16)

From the Bode diagram in Fig.3, the transfer function
AVRI(s) can be approximated by the biproper one

K, (1+Tes)
1+T,s
Hence, by (13), (14), (15) one obtains

AVRI(s) =

1+ Tps
———PSS2(s) .
Ka(1+Tss)
The right-hand member of (17) is a second order transfer
function which can be put in the form (12).
Choosing © =20, one finally obtains T, = 0.18, T,=2.45, T;
=10, T, = 20, K, = 14.5 (recall that all time constants are
expressed in seconds). :

PSSi(s) = (17D

Remark: A similar rationale can be used for obtaining a PSS
whose input is the rotor speed.

IV. ANALYSIS OF THE RESULTING AVR+PSS

A. Three phase fault (single machine, infinite bus)

Let us first consider the performance of the resulting
AVR+PSS in the case of a 110 ms three phase fault when the
machine is connected to an infinite bus at the following
operating point: P=1, V=0.95, g=1, X=0.6 (hence, this fault is
a very large disturbance). The behaviors of V, P, @, and V,
are shown in Fig.6. The system remains stable. The excitation
voltage remains at its highest value during almost 1 second
after the fault clearing, and, as is well known, such an
overexcitation is a key point for getting a good critical
clearing time: see, e.g. [9]. Note that in the case shown here,
no line is tripped after the fault clearing; but the controller is
very efficient in the case of a switching operation [9], hence

the case shown here can be considered as
representative.

sufficiently
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Fig.6 Three phase fault

B. Oscillation damping (multi-machine network

T\ [ 00251001 | 022 001|005

On )

GENI l é) GENIL
GEND ‘ GENI2

Fig.7 The multi-machine network

For testing the AVR+PSS on a multi-machine network, the
system in Fig. 7, identical to the one defined in [11], has been
considered. All generators have the characteristics detailed in
[11]. One observes inter-area oscillations at roughly 0.35 Hz
(the transit between the two areas is' 400MW from left to



right) when using classical AVRs only [11]. The active
power and the terminal voltage at generator 2 are shown in
Fig. 8 in case of a step of the terminal voltage set point. Two
cases are considered :

(i) no PSS on the machines (solid line);

(ii) a coordinated AVR/PSS in each area, on generators 2 and
12 (dotted line). The other machines are equipped with the
AVRs of [11].

4.0 T

16. 20 24. 28. .
pevwer  m®

-Busigl =8

100 MVA base

16, 28, 23, 26,
{1888 8883

1%,
sliage bis

it PSS
‘iV‘Ply’Sulln each area

Fig.8 Stepon V,

Clearly, putting a coordinated AVR/PSS in each area is very
efficient for damping local and inter-area oscillations. The
low mode is due to the speed controller. '

V. CONCLUDING REMARKS

The approximations used in Section III bridge the gap
between the DFLR structure (which is a state feedback
controller including an integrator on the regulation error) and
the standard AVR+PSS structure IEEE ST1A + PSS1A. This
makes it possible to optimize the parameter values of the
latter structure using the methods of modern control theory.
In this paper, the desensitivity method is used in order to
obtain a coordinated AVR+PSS having a good robustness
against parametric uncertainties (variations of the external
reactance, etc.). This robustness was extensively studied in
the "single machine-infinite bus" case in [9].

Although the AVR+PSS has been designed using the "single
machine-infinite bus" model, the simulation results in Section
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IV.B prove that it is also efficient for damping the local and
inter-area oscillations of a multi-machine system. A reason
for this is that when the external reactance X of the infinite
bus increases, the frequency of the oscillating mode
decreases. As the matter of fact, for X=0.2, f= 1 Hz, whereas
for X=1, f=0.3 Hz. Hence, when making the controller
robust against large variations of X (using desensitivity), one
makes it more efficient for damping low-frequency inter-area
oscillations. Additional studies based on a network having a
structure similar to that of Fig.7 have shown that the
AVR+PSS proposed here is still efficient for damping inter-
area oscillations at roughly 0.25 Hz, provided that each area
is equipped with at least one such an AVR+PSS.
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Discussion

Z. Yao and V.Rajagopalan (Chaire de recherche
industrielle Hydro-Québec-CRSNG, Université du Québec,
Trois-Rivieres, Québec, G9A 5H7, Canada) :

The authors have presented an interesting new method
of analysis and design of robust coordinated AVR/PSS for
excitation control of generators. Such a robust coordinated
AVR/PSS is insensitive to operating conditions of the
generators and impedance in a “single-machine-infinite-
bus” system.

However, a PSS usually is not very sensitive to
operating conditions and impedance value in comparison
with network structure and. controllers used by other
components, such as generators and FACTS devices in
power systems. That means, the performance of a PSS
depends much on interactions between controllers of
different components rather than on the equivalent
impedance and operating conditions of generators.
Therefore, it would be much more interesting to check the
sensitivity of a PSS to this kind of interactions.

Furthermore, one of the main problems of PSS lies in
the fact that by a PSS, it is very difficult (if not impossible)
to get satisfactory damping to oscillations in a large band of
frequency, for instance, the conventional Four Loop
Regulator can improve low frequency oscillation but it
degraded torsional oscillation in some cases. So, it would
be necessary to show that this new PSS could improve this
problem. '

Finally, we would like to indicate that a comparison
between a conventional PSS and the new one proposed in
the paper would be more convincing than that presented in
Fig. 8 between an AVR without PSS and the new PSS.

Henri Bourlés (Electricité de France, Direction
des Etwdes et Recherches, 92141 Clamart Cedex, France):
First of all, I would like to thank MM. Yao and Rajagopalan
for their interest in our paper and for their pertinent questions.

1. I think that there is a strong relationship between the
sensitivity of a PSS to the petwork structure and its sensitivity
to the impedance valye. Changes in the network structure can

indeed be (roughly) represented by changes in the impedance

value (case of line outages, for example). Therefore, to some
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extent, the more a PSS is robust to the impedance value, the
more it is robust to the network structure. This is confirmed
by the behavior of the French power system, where every big
generator is equipped with the "Four Loop Regulator” (FLR)
which is very robust to the impedance value. Due to this
robustness, the French power system is very robust to changes
in the network structure.

2. The problem of interactions with other components
(especially, other generators) is quite different. For example,
in case of a generator tripping, the other generators (equipped
with PSS) must not be too much disturbed. This means that
those PSS must not be too sensitive to variations of the
network frequency. In other words, the action of the PSS
must not be too strong. This requirement is contradictory with
the robustness to the impedance value (for which a strong
stabilization effect is needed). Therefore, a good compromize
has to be found. This is why the FLR, currently implemented
on the French generators, will be replaced by the
"Desensitized Four Loop Regulator" (DFLR), proposed in ref.
{71, [9] and in the present paper. This controller is indeed
much less sensitive than the FLR to variations of the network
frequency (although its robustness to the impedance value is
still very satisfactory): the above-mentioned compromize is
better. Many simulations have shown that by decreasing the
sensitivity to the network frequency, the interaction with other
generators also decreases.

3. It is true that several years ago, the FLR had a bad
effect on the torsional oscillation. This problem has been
solved using a filter, The filter proposed in ref. [10] is
particularly suitable.

As is mentioned in the Concluding Remarks, the
frequency of the oscillating mode of the single machine—
infinite bus system is very dependent on the impedance value.
Therefore, the more a PSS is robust to this value, the larger is
the band of frequency on which it is efficient. Hence, this
band is pretty large in the case of the PSS we are proposing,
and this is why it is efficient for damping local oscillations
and inter-area ones as well. But, as was said above, some
additional filtering may be useful.

4. Ifully agree that a comparison with a conventional PSS
is very important, and such a comparison has been extensively
made in ref. [9].
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