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Abstract—The notions of poles and zeros at infinity and their relations

are extended to the case of linear continuoutime-varying systemsThis ?nd the notlonlof” linear newborn system” is introduced. “It IS a
study is based on the notion of a “newborn system” which is, in Module extension” by graded free modules, or for short, a “graded

a mathematical point of view, a graded module extension over the module extension.” As is shown below, two PMD’s are restrictly
noncommutative ring of differential operators. It is proved to be a equivalent iff they are the representations, in different bases, of the

relevant generalization to the time-varying case of the equivalence class, g3 e newhorn system. As in the usual time-invariant case, structural
for the so-called “restricted equivalence” of Rosenbrock’s polynomial

matrix descriptions. The authors’ approach is intrinsic and unifies the —indexes, order, and deg.re.e .(i.e., the vz.irious kinds of muIFipIicities)
definitions previously given in the literature in the time-invariant case. of a pole or a zero at infinity are defined and characterized here

Index Terms—Module, noncommutative rings, structure at infinity (generalizing the terminology used in, e.g., [18]); but such a pole or
time-varying systems. ' ' ' azerois defined as being a module, as in, e.g., [10], [21], and [23].

Il. MATHEMATICAL TOOLS
|I. INTRODUCTION

Poles and_zeros at i_nfinity of linear time-invariant systems ha\ﬁ Some Noncommutative Rings [8]
been extensively studied since the end of the 1970's (see, e.g., ) o . o
[1], [10], [13], [27][30], [24], [10], [7], [21], [23], and [22] for LQtK 2 IR be agr_our?d differential f'.e,,lfj’ i.e., a commutative field
a comprehensive treatment). Thgstem poles at infinitgonsist of €duipped with a derivation denoted by™ R := K{s] denotes the
the transmission poles at infinitgnd of thehidden modes at infinity 1N9 Of polynomials with coefficients id and indeterminate; the
[27]. The transmission poles at infinity are related to the number E{er has the meaning of the usual derivation, Znd equipped with
differentiations between the input and the output. The hidden mod8€ following “commutation rule™ for every: in K
at infinity are related to the impulsive motions which can arise inside
a system formed at an initial time (due to a failure or a switch)
with arbitrary initial conditions and which cannot be eliminated wittRight-multiplying (1) by a time function, it appears to be the
a nondistributional input or which cannot be observed [27]; thodesual Leibniz rule. In other wordsR is the ring of differential
impulsive motions are due to the “compliance constraints” [32] whesperators with coefficients ik, the field of (possibly) time-varying
they are violated. Such a system is calledeavborn systenm the coefficients.
sequel (where this notion is mathematically defined). Blgstem The ring R is a (left and right) principal ideal domain. In addition,
zeros at infinityconsist of thetransmission zeros at infinitgnd of R is a left and right Ore domain, hence its field of left fractions and
the hidden modes at infinity [13]. The transmission zeros are relatigsl field of right fractions exist and coincide; this quotient field is
to the number of integrators between the input and the output, i.e.denoted byF.
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This ring is equipped with the commutation rule deduced from (1)F can be embedded ih, so thatG(c ~') = H (o) can be considered

®)

which is the rule of “integration by parts.” The rin§ has the
following properties.

1) An element of S, of the form (2), is a unit (i.e., is invertible
in S), iff ag # 0.
Setw(a) = min{j: a; # 0}; the integerw(a) is called the
order of a, anda can be put into the forna = ve*(® =
@y, wherev and v’ are units.
Therefore, S is a (left and right) principal ideal domain,

oa = a0 — oao

2)

3)

as a matrix with entries itL. The Smith-MacMillan form ofH over
L completely describes the structure at infinity@f The following
notions are usual in the cask = TR [18], [26] and are now
generalized to the case of any differential ground field.
Definition 2: The integers;, 1 < i < r, are thestructural indexes
of G(s) atinfinity. If v1 <0, —v, is theorder of the pole of G(s) at
infinity, denoting by%, the sum of all negative;, —%, is thedegree
of the pole of G(s) at infinity. Similarly, if v, > 0, this integer is the
order of the zero of G(s) at infinity, and denoting by=. the sum
of all positivev;, ¥. is the degreeof the zero ofG(s) at infinity.

commutative iff K is a field of constants (i.e., of elements!f 71 >0, thenG(s) is said to have dlocking zero at infinitywith

whose derivative is zero), and every nonzero ideabaé of
the formo*S = So* := (0*). Let @ andb be two nonzero
elements ofS; b dividesa (right and left) iff w(b) < w(a).
The ringS has a quotient field, which is the field:= K ((o))
of Laurent series irr, and the quotient fieldd* of R can be
embedded inL (in other words, every element df can be
considered as an elementbfwhich is of the formS,>, a;0",
v € Z, a, # 0).

4)

B. Matrices overS and overL

order v;.

Obviously,G(s) can be expanded &S(s) = 72, ;0 where
0., # 0. Hence, the transfer matrig/(s) is proper (respectively,
strictly prope) iff v+ > 0 (respectively,y; > 1), and theindex of
G(s) is max (0, 1—w4) [19], [15], [16], [11]; G(s) is biproper iff it
is invertible, proper, and with a proper inverse.

C. Modules

Some basic results about finitely generated modules over principal
ideal domains are recalled here. For a more detailed intuitive intro-

The set of unimodular (i.e., square and invertible) matrices Sverduction of these notions (in the commutative case), see [2] where the

and of dimensiom x n is denoted by/,,. The proof of the following
result is straightforward and is detailed in [5].
Proposition 1: Let

P= irmi
:=0

be an element o6 *", wherel'; € K"*",i € N. Then,P € U,
iff 'y is invertible. In this case, for every € N, there exist matrices
Py and P, in U,, such thatr*P = P.o* and Po* = o* P,

Even in the noncommutative case, the “Smith form” of a matrix

A € 87 exists and is

{diagéa“f} 8}

1 <i<r, where0 < py <--- < uyp; it is easy to show that this

form can be obtained using the three classic elementary column and

row operations. As in the usual commutative casegthel < i < r,
are called thdanvariant factorsof A [8].

Definition 1: Thep,, 1 < i < r, are called thestructural indexes
of A, p, is called itsorder, andu1 + - - - + u- is called itsdegree.

This definition is consistent with the terminology of [18]. Let us
now generalize the classic Smith—MacMillan form to matrices with

entries inL. Let H = H(o) be such a matrix.
Proposition 2: There exist unimodular matricdsi andU overS
such that
diag{e™ 0
0 0}

1 <i<vr, wherev; < -+ < v,.. The integersy;, 1 < i < 7,
are uniquely defined fromH. (The above matrix is called the
Smith—MacMillan form of H over L.)

P, HU = {

Proof: Let o* be the least common denominator of all entries

of H. Then,H can be writtenH (¢) = 0 =" A(c), where A = A(0)
is a matrix with entries in§. Let P andU be unimodular matrices
over § such thatP~! AU is the Smith form of4. By Proposition
1, P, HU = P, o™ AU = (6" P)™'AU = (Po*)™'AU =
o~*P~' AU. Clearly, this matrix is the Smith—MacMillan form of
HoverLandv, =pu; -k, 1<i<r. O
Consider now a matrixG = G(s) with entries inF (i.e., the

transfer matrix of a linear time-varying system [15]). As stated above,

connection with Rosenbrock’s PMD’s is also widely developed.

1) Let D be a (not necessarily commutative) principal (left
and right) ideal domain (e.g.D = R or S) and w =
{wq,---.wy} be a finite subset of a lef®-module M. The
column matrix[w,- - -, w,]" and the submodule spanned by
w are, respectively, writtemw and[w]p (the module generated
by the empty subset d¥/ is the trivial submodule consisting of
zero alone, and is denoted by zeml.modules considered here
are finitely generated modules over left and right principal ideal
domains having the left and right Ore properfjhe properties
of such modules recalled below are well known [8].

For everyD-module M, there exists a short exact sequence

(4)

where€ andF are freeD-modules; (4) is called presentation
of M; the triple M™ = (f,&, F) is called anextensiorof the
D-moduleM by the D-modulesE andF. All extensions con-
sidered here are extensions by free modules.{ket- - -, ¢}

andw = {w,,---,w,} be bases of andF, respectively. In
these baseg, is represented by a matri; S is called amatrix

of definitionof M (or of its extensionM ™). Sete; = f(e;),

1<i<gq,sothate = S"w, and letw; = ¢(w;), 1 <i < k;

then, M = [w]p = [w]p/[e]p and one has

2)
e

L Fr S m—o

00—

~

STw=0. )

Equation (5) is called the equation of the modie[2] (or
of its extensionM ™) in the chosen bases.
Let @ be the quotient field o). The extension of the ring
of scalars fromD to @ is the functorQ - . Let M be a
D-module, and sedf = Q @p M and, for any element. of
M, m = 1g@m (M is aQ-vector space). Let1, - - -, m, be
elements of\f; they areD linearly independent iffi, - - -, 7
are @) linearly independent. In particular, an element is
torsion iff m = 0. A D-module M can be written as a direct
sumM =T (M) @, where7 (M) is the torsion submodule
of M and where® = M /7 (M) is a free submodule (unique
up to isomorphism). Theank of M, writtenr k(M) is the rank
of @, i.e., the cardinality of any basis df [so that® & D”,

3)
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wherep := rk(®)]; this rank is equal to the dimension of theB. Construction of theS-Module A™
vector spaceM. Let M; and M» be two modules such that Tpgre exists a left-coprime factorizati¢r (o), B(c)) of ST (1/7)

M, C My; one hasM, = M, iff M,/M, is torsion. over S [5]
Consider now the cas® = R (henceQ = F). Then, . .
according to Fliess [18F'« - is called the_aplace functorit S (1/o)= A" (0)B(o) 9)

is a generalization to the time-varying case of the usual Laplac$| B (9 i of definiti ¢ S-module A+
transform (with zero initial conditions). Anear systenis a R- The matrixB() of (9) is a matrix of definition of a&-module:

moduleA [14], andF ©r A = A is called thetransfer vector and the following result is obvious (see [6] for details).
spaceof A [15]. Note ihat asF C L. LopA=Lop A Proposition 3: The S-module A is uniquely defined from the

Consider the casP = S. The invariant factors of any matrix newborn system\”, up to |s$rr_10rph|sm._ )
of definition S of an S-module M+ are only dependent on Therefore, theS-moduleA™ is determined by calculating (o),
VI*. Therefore, we are led to the following definition which is one of its definition matrices. An equation &t is

Definition 3: The structural indexes, the order and the degree of BT(a)w+ =0 (20)
M, are those of any matrix of definition of this module.

4) Graded modules: Modules ov@ can be considered as being
graded. To explain this, let us take the examplefoflLet

(see [6] for an abstract construction af").

& be the K-vector space spanned Hy:,---,¢,}, and set C. Newborn Dynamics
& = s'€, i > 1. Considering thes;, i > 0, and £ as 1) According to Fliess [14], &near dynamicsD is a R-moduleA
Abelian groups, one can writ€ = @;>¢ &. The module (i.e., a linear system) where an inputwith m elements) and
&, equipped with this structure, is said to bgraded module (possibly) an outpug (with p elements) have been chosen such
A change of basis in the graded free moddlds a “graded that D/[u]r is torsion. The inpu is said to beindependent
automorphism,” represented by an invertible matfixover iff the module[u]r is free of rankm. In this case, there exists
K (i.e., such a transformation matriX is not a polynomial a unique matribxG(s) € FP*™ such that) = G(s)d andG(s)
matrix). For convenience, a module extensioh= (f,&, F), is the transfer matrixof D [15]. The definition of anewborn
where€ andF are graded as above, is calledgrmded module linear dynamicscan now be given.
extension. Definition 5: A newborn linear dynamic®* is a newborn system
(f,€,F) such that an “input®» = {u,,---,u,,} and an “output”
Il. NEWBORN DYNAMICS AND RESTRICTED EQUIVALENCE y={y,,---.y,} have been chosen ifi such that Uy is free and
[u. y]r is a direct summand of (i.e., F is of the form= & [u, y|r),
A. Newborn System D/[u]r is torsion, andu]r is free of rankm.
Consider the PMD with time-varying coefficients [17] The variablew™ of (10) can then be written [according to (7)]
D(5)£ — JV(.S‘)’LL wt = [EJrl ut y+l ]1 . (11)
y=Q(s)+ W(s)u (6) 2) Examples of newborn linear dynamics and of the associated
S-module Dt.

where D(s) € R"*", N(s) € R"*™, Q(s) € R"*", W(s) €
RP*™; the column matrices, £, andy are the input, the partial state,
and the output, and they are of lengths n, and p, respectively.
It is assumed thaD(s) is full rank overF := K (s). Equations (6)
can be written in a form similar to (5)

In all examples belowk = IR(¢) where, roughly speaking,> to
denotes the time.

Example 1: In this example, we consider the PMD with time-
varying coefficients

& =0
D(s) —N(s) 0 ¢ 3 5 '
Qs) W(s) —L||"|~ 0- ) sl 578 = (= 1)su
> ; : y = ts&1 + t°su.

. . . N o Note that the first equation cannot be replaced in the two following
As was ia'd aboyeS(s) is a matrix of definition of a module ones, due to the nonzero initial conditiogis(#; ), €1 (#7)., etc. Put
extensionA” = (f,¢, ) from which theR-module A = coker f  this PMD into the form (7). The graded free modukeand.F are of
is defined up to isomorphism. If a change of basis is made &amd 53nks 3 and 4, respectively, the basis chosefi iiespectively,F)
F, the matrix of definitionS(s) is changed, whereas the modulgg \yritten {e1.eo.es} (respectively ¢, .&,.u. y}) and the morphism

extension\* is left unchanged; the matrig” (s) is now replaced by f is defined byf(e) = €, f(es) = £5°¢ + $°6. + (1 — )su
o ;17 o - b > © S92 AR )

ST _ysTy 8) fles) = ts& + 2 su — y- Obviously, D/[u]r is torsion, hence
D* = (f,&,F), with input » and y outputy, is a newborn linear
where the matrice$’ = U(s) andV = V(s) are unimodular over dynamics.
R. Clearly, S(s) and S (s) are matrices of definition of the same The left-coprime factorization (9) is obtained as usual [18], pro-
linear system. However, the structure at infinityS(fs) is the same vided that the rule (3) is systematically used; one obtains
as that ofS (s) iff U andV" are biproper [26], i.e., are invertible
. . ; 1 0 0
matrices ovetrk. Such matrices correspond to particular changes of 3
- : o - . A(c)=10 ¢° 0
bases which preserve the orders of differentiations of the variables in 0 0 o
(5). From Section 1I-C4, this is related to the notiongsbding We
are led to the following definition. 10 0 5 0 R 0
Definition 4: A newborn linear systen\* is a graded module Blo)=|t=30 o 30 ‘l‘ (I—t)o” 0
extension overR. t—o 0 =20t 4
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Therefore, theS-moduleDt is defined by 5) invariant zero at infinityD™ /[y ]s;
e =0 6) tra+nsmission (trans.) zero at infinity®* N[y ™, u]s)/ (2T N
B [y']s);
(t—30)& +oed +[36° + (1 =t)o’lut =0 7) system pole at infinityD™ /[ut]s;
(t— )&t + [ = 20t]u* — oyt = 0. 8) transmission pole at infinity®* N [y*, ut]s)/[u™]s:

9) controllable (cont.) pole at infinityd™* /[u"]s;
The first equation can now be replaced in the two following ones. 10) observable (obs.) pole at infinitly*, v ]s/[u]s.

Example 2: Consider the kth-order time-varying derivatory =
ts*u. The same rationale shows that thenoduleD™ is defined by de
cfyT = (t — ko)uT.

In addition, the order of the blocking zero at infinity & is
fined as that of the transfer matriX(s) (when it exists; see

. ) . L , Definition 2).
LExampIe 34 90“3"?'“ the kth-ordir tlms-\iarylng integrator Applying the same rationale as that in [2], one obtains the following
ts"y = u. D7 is defined by(t — ko)y™ = o"u™. result
_ _ Proposition 4: The structural indexes of the transmission zero
D. Restricted Equivalence (respectively, pole) at infinity dP* are the nonnegative (respectively,

Definition 6: Consider two PMD'’s of the form (6), with the samethe opposite of the nonpositive) structural indexes of the transfer
inputs and outputs. They are said to be strictly equivalent iff they ameatrix G(s) at infinity.
the representations, in different bases, of the same newborn dynamicghe following definitions of properness is an extension of defini-
The following result proves that the above definition of restrictetions given in [25] and [11].
equivalence is consistent with that given in [1] and [27] in the Definition 8: A linear newborn dynamicg* is said to be in-
time-invariant case. ternally (respectively, transfer-) proper iff the degree of its system
Theorem 1: Let [D(s), N(s),Q(s),W(s)] and [D'(s),N’(.e), (respectively, transmission) pole at infinity is zero.
Q'(s), W'(s)] be two PMD’s as in (6). They are restrictly equivalent From the rationale used in [2] one obtains the following theorem.

iff there exist matriced’, X, R, andY over K, of sizesn x n, p X n, Theorem 2: The following properties hold, wher-) denotes the
n x n, andn x m, respectively, such thaf' and R are invertible degree of the module in parentheses and whégethe rank ofG(s)
and such that over F* (or L).
D,(s) —N,(s) [T 07[D(s) -N(s)][R Y 1) é(hidden mode atc) = 4(i.d.z. atoc) + 6(0.d.z. atoc) —
{Q’(s) W'(s) } - {X IJ {Q(s) W(s) Ho Im}' 6(i.0.d.z. atoo).
2) 4(system pole atx)
Proof: Define S (s) and ST (s) according to (7). There exist )
two invertible matricesU’ and V' over K such that (8) holds. = &(i.d.z. atoo) + 4(cont. pole abo)
The transformation (8) is compatible with the structure f(s) = = 4(0.d.z. atx) + 6(obs. pole atc)
and S'T(s) and the basiat U y of [u,y]r is left unchanged (see = b(trans. pole ato) + 6(hidden mode ato).
Definition 5) iff the matriced andV" are of the form 3) s(trans. zero ato) + 6(i.0.d.z. atso) < s(invariant zero ate).
T 0 R Y 0 4) If p = p, i.e., G is right-invertible, then
U= {Y T }, V=0 I, 0 S(trans. zero ato) + 6(i.d.z. atec) < é(invariant zero at
3 P 0 0 I, 00).
. . 5) If p =m, i.e., G is left-invertible, thens(trans. zero atc) +
Clearly, (8) is then equivalent to (12). O 5(0.d.2. ateo) < é(invariant zero abo).
6) If p = m = p, i.e., G is square and invertible, then
IV. POLES AND ZEROS AT INFINITY S(trans. zero abc) + 6(hidden mode atc) = §(invariant

zero atco).
A. Definitions and Relations

In this paper, poles and zeros at infinity afemodules' Their B, Computations
structural indexes, orders, and degrees are defined according 1 this section, we show how the structural indexes, orders and

Definition 3. These poles and zeros are defined by analogy with t&ggrees of the various poles and zeros at infinity, can be computed

modules of finite poles and zeros defined in [2]. in practice in the case of a PMD with time-varying coefficients of

. =+ -+ +
Remark: In v+vk_1at follows, T +d’erJ1rotesT(D .)’ ®7 is a free the form (7). First, write it in the form (2), and I¢ti(o), B(o)] be
submodule of>™ isomorphic taD™ /7™ (see Section 1I-C3), and, by a left-coprime factorization 06" (1/o) over S. Write

a slight abuse of notation, the projectiii’ — D* /7" is identified
with the projectiorD™ — &*. In addition,[u]s is free (because so Dt (c) =NT(o) Z'(0)
is [u] ), hence it is identified with a submodule ®f" (still denoted B(o) = Q) Wt(e) Y*(0)
by [ut]s); see [2].

Definition 7: The various poles and zeros at infinity of a newboraccording to the sizes in (7). TH®&moduleD™ is defined by (10)

(13)

linear dynamicsD™ are the followingS-modules: 1) The structural indexes of thel.z. at infinityare those o3 (7).
1) input-decoupling zero at infinity (i.d.z. at): D*; Calculating the Smith form of3(¢) in Example 1,D* is found
2) output-decoupling zero at infinity (0.d.z. at>): o have an i.d.z. at infinity with degree 1 (and order 1). The physical
D /ly*, ut]s; meaning of this is the same as the one pointed out by Verghese [27]
3) input-output decoupling zero at infinity (i.0.d.z. at): n the casek = IR; assume that the system is formed at some initial
T NTH Oy, u’]s); time to, due to a failure or a switch. Then, if the initial condition
4) hidden mode at infinityD* /(®* N [y*.u"]s): of & is nonzero, an impulsive behavior occurs in the second row

1They are not the same as those introduced in [10] (and used by sevéhthe equations oD™ at time t5. and cannot be eliminated using
authors); see the concluding remarks. a nondistributional input; ifu is a nondistributional input, theg,
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is a distributional signal, and more specifically it is tfiest order  [4]
derivative (in the sense of distributions) of a discontinuous function.
In the general case, with a nondistributional input, several parti
states or outputs;, , - - -, v;, are distributional ones, where every,
1 <1 <k, is the derivative of ordew; of a discontinuous function.
Then, the i.d.z. at infinity is of order méx, - - -, w; } and its degree
iSwi + -+ +wy if the v;,, 1 <1 <k, are linearly independent in
the suitable sense. (7]
2) Similarly, the o.d.z., invariant zero and system pole at infin{g]
ity are, respectively, characterized by the matriégs.(v),
Bi.(c)., B.,(s) defined by (]

(6]

. [DT(e) N DT (o) —=NT(o)
BOJZ(J) = |:Q+(0'):|, Bz;(ﬂ') = |:Q+(0') "1/;4»(0_) [10]
_ [DT(e) Z%(a) [11]
Bs])(o—) = |:Q+(O') },_;'_(0_) .

3) The structural indexes of theansmission zero at infinitgnd of  [12]
the transmission pole at infinitgan be computed by applying
Proposition 7. [13]

4) The transfer matrix oD in Example 1 is (ovell) G(s) =

t?c~"'. As a result,D* is found to have a transmission pole[14]
at infinity with degree 1 (and order 1). The physical meaning
of this is that for expressing in function of u, one must [15]
differentiatex one time.D* in Example 2 (respectively, three)
has a transmission pole (respectively, zero) at infinity Withl_G]
indexes{k}, orderk, and degreé:.

The computation of the other infinite poles and zeros (see

Definition 7) can be made using the same rules as those detailéd

in [2] for the finite ones (see also [5]). 18]

[19]
V. CONCLUDING REMARKS

Definitions and properties of poles and zeros at infinity havgo]
been fully extended in this paper to the case of linear varying
time-continuous systems. Our approach unifies all existing ones @4
particular, it is shown in [6], using the so-called “normalized form”
[27], [13] as well as minors of matrices and their valuations [18]p7]
that our definitions are consistent with those given in [1] in the time-
invariant case). One of the advantages of defining a pole or a zerd%#
infinity as being a module is that its whole structure is then captured
(this has been already mentioned in [10], where infinite zero and pcrﬁ]
modules associated with a transfer matrix are defined and studied).
In our approach, the system is considered in an intrinsic manner
instead of through one of its representations. Such a point of view
has applications such as the choice of suitable input variables \%F]
obtaining an internally proper linear “newborn dynamics” [3]. [26]

The extension to the case of invariant discrete-time systems is
obvious (the derivation has only to be replaced by the forward shift
operatorg). The case of varying discrete-time systems is much moké’]
complicated because nonintegral rings must be used [12]. 28]
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