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The Exact Model-Matching Problem for Linear
Time-Varying Systems: An Algebraic Approach

Bogdan Marinescu and Henri Bourlès

Abstract—The exact model-matching problem is formulated and solved
for linear time-varying systems. The condition for the existence of a proper
solution, which is well known in the time-invariant case, is proven here to
still be valid in the time-varying case. The properness is characterized using
the Smith–MacMillan form at infinity, recently defined by the authors for
the transfer matrices with time-varying coefficients.

Index Terms—Linear time-varying systems, model matching, proper-
ness.

I. INTRODUCTION

The exact model-matching problemconsists of assigning the whole
transfer matrix of a system. More specifically, for a given plant with
proper transfer matrixA(s), this problem is to find a control scheme
and compensators so that the resulting system has exactly a desired
transfer matrixB(s) [6], [12]. If an open-loop compensator is used,
the problem is to find a transfer matrixG such that

G(s)A(s) = B(s): (1)

This general problem was first formulated in [21] and next studied
in [11], [14], [15], and other related references for rational transfer ma-
trices with time-invariant coefficients.

To be implementable, the solutionH(s) must be aproper transfer
matrix. The necessary and sufficient condition for (1) to have a proper
solution was given in terms of matricesA(s) andB(s) using various
formalisms: in [12] and [15] minors are used to check thatA(s) and

F (s)
�
=

B(s)

A(s)
have the samevaluationat infinity. An elegant inter-

pretation using poles and zeros at infinity is given in [19] and [20],
where it is proven that the necessary and sufficient condition for the
existence of a proper solution to (1) is thatA andF have the same
contentat infinity. As shown in Section III, this characterization is still
valid in the time-varying case, provided that the notion of content at
infinity is suitably generalized (Section II), and this is the main contri-
bution of this note.

Though the exact model-matching problem has been widely studied
for constant linear systems, this subject has never been tackled in the
time-varying case. However, on one hand, the problem occurs for in-
dustrial plants with time-variant structure like flexible ac transmission
systems (FACTS) (see, e.g., [13]) or when using periodic controllers for
time-invariant systems to avoid an undesirable behavior of the closed
loop due to unsuitable plant zeros [16]. On the other hand, in [8] it is
proven, using module filtrations, that the notion of properness has the
same interpretation in the time-varying case and in the time-invariant
one: proper linear systems can be implemented without differentiators.
For instance, for the nonproper system defined byy = t _u, one has to
derivate once the input in order to get the output, i.e., the system has
one transmission pole at infinity.
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Recent studies [3], [4] define the structure at infinity of linear
time-varying systems. The approach used is based on the theory of
non commutative principal ideal domains and of graded modules over
such rings [7] and it is strongly connected with the module-based
framework developed by Fliess (see [9], [10], and related references).
The practical calculations involve only matrices [2]; particularly, the
Smith–MacMillan form at infinity of a rational matrix with coefficients
in a non commutative field was defined and studied. This framework
is used here to formulate and solve the exact model-matching problem
for linear time-varying systems. Preliminary results were given in [17].

II. M ATHEMATICAL TOOLS

A. Noncommutative Rings and Matrices Over Such Rings: A Brief
Review

The notation is that used in [4] to which the reader is referred for
more details (and to [7] for basic mathematical results). LetK � <

be a ground differential field, i.e., a commutative field equipped with a
derivation denoted by “�”, R := K[s] denotes the ring of polynomials
with coefficients inK and indeterminates = d=dt, andR is equipped
with the following “commutation rule”: for everya in K

sa = as+ _a (2)

(Leibniz rule). In other words,R is the ring of differential operators
with coefficients inK, the field of (possibly) time-varying coefficients.
The ringR is a (left and right) principal ideal domain. Its field of left
fractions and its field of right fractions exist and coincide (“Ore prop-
erty”); this quotient field is denoted byF.

Set� = 1=s (“integration operator”). Consider the ringS := K[[�]]

of formal power series in�, i.e., consisting of elementsa of the form

a =

+1

i=0

ai�
i (3)

whereai 2 K. This ring is equipped with the commutation rule de-
duced from (2)

�a = a� � � _a� (4)

(rule of “integration by parts”). The ringS has a quotient field, which
is the fieldL := K((�)) of Laurent series in�, andF can be em-
bedded inL (in other words, every element ofF can be considered as
an element ofL, which is of the form

i�� ai�
i, � 2 , a� 6= 0).

The “Smith form” of a matrix A 2 S
n�m exists and is

diag f�� g 0

0 0
, 1 � i � r, where0 � �1 � � � � � �r (this form

can be obtained using the three classic elementary column and row
operations). As in the usual commutative case, the�� , 1 � i � r,
are called theinvariant factorsof A [7]. The integerr is therankof A
overS, i.e., the size of the largest minor with a non zero “Dieudonné
determinant” [1];r is also the rank ofA overL. The�i, 1 � i � r,
are called thestructural indicesof A, �r is called itsorder, and
�1 + � � � + �r is called itsdegree[4].

Let H = H(�) be a matrix with entries inL. The following fact
generalizes the classic Smith–MacMillan form to matrices with en-
tries inL: there exist matricesP 0

k andU , unimodular overS, such that

P
0�1

k
HU =

diag f�� g 0

0 0
, 1 � i � r, where�1 � � � � � �r .

The integers�i, 1 � i � r are uniquely defined fromH , andP 0�1

k
HU

is called the Smith–McMillan form ofH overL.
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Consider now a matrixG = G(s) with entries inF (i.e., the transfer
matrix of a linear time-varying system [10]). As mentioned earlier,F

can be embedded inL, so thatG(��1) = H(�) can be considered as a
matrix with entries inL. The Smith–McMillan form ofH overL com-
pletely describes the structure at infinity ofG. The following notions
are usual in the caseK = < [12], [18], and have been generalized to
the case of any differential ground field [4]: the integers�i, 1 � i � r,
are thestructural indexesof G(s) at infinity. If �1 < 0, ��1 is the
orderof thepoleofG(s) at infinity, and denoting by�p the sum of all
negative�i, ��p is thedegreeof thepoleof G(s) at infinity [written
�(pole ofG at1)]. Similarly, if �r > 0, this integer is theorderof the
zeroof G(s) at infinity, and denoting by�z the sum of all positive�i,
�z is thedegreeof the zero ofG(s) at infinity [written �(zero ofG at
1)].

Obviously,G(s) can be expanded asG(s) = 1

i=� �i�
i where

�� 6= 0. Hence, the transfer matrixG(s) is proper (resp.,strictly
proper) iff �1 � 0 (resp.,�1 � 1).

B. Content at Infinity: Extension to the Time-Varying Case

As was said in Section I, the content at infinity of a transfer matrix
is a key notion for solving the exact model-matching problem. The aim
of this section is to generalize this notion to linear time-varying case.
The following preliminary result is also needed.

Proposition 1: Let A(s) 2 F
m�r andB(s) 2 F

l�r be full-
column rank1 transfer matrices. If the pole and the zero at infinity of

F (s)
�
=

A(s)

B(s)
have degree zero, then the poles at infinity ofA and

B have degree zero.

Proof: Set� = 1=s and letF (1=�) =
A(1=�)

B(1=�)
=

A(�)

B(�)
.

The Smith–MacMillan form at infinity ofA (resp., ofB) is of the form
��k P 0�1AU 0 (resp.,��k P 00�1BU 00) wherek0 (resp.,k00) is the
least common denominator (up to similarity) of all entries ofA (resp.,
of B) andA(�) = ��k A(�) whereA is a matrix with entries inS

(resp.,B(�) = ��k B(�) whereB is a matrix with entries inS). P 0

andU 0 (resp.,P 00 andU 00) are unimodular matrices overS which give

the Smith form ofA (resp.,B): P 0�1AU 0 =
diag f�� ; . . . ; �� g

0

(resp.,P 00�1BU 00 =
diag f�� ; . . . ; �� g

0
) (see Section II.A, [3],

and [4]). Letk = maxfk0; k00g. Consider the casek = k0 > k00. Then,

the Smith–McMillan form at infinity ofF is ��k
diag f�� g

0
,

where�i = min f�i; �i + k � k00g, 1 � i � r. As the pole and the
zero at infinity ofF have degree zero, it follows�i = k, 1 � i � r.
One obtains thatk = min f�i; �i + k � k00g, 1 � i � r from which
k � �i andk00 � �i, 1 � i � r, i.e., the poles at infinity ofA and
B, have degree zero. The same rationale can be made in the case
k = k00 > k0.

The following notion was introduced in [19] and [20] to study the
structure at infinity of linear invariant systems, and is now generalized
to the time-varying case.

Definition 1: Let G(s) be a transfer matrix with entries
in L. The content of G at infinity, denoted by c1(G), is:
c1(G) = �(pole ofG at1) � �(zero ofG at1).

The following property is the key point for solving the
model-matching problem. The formulation in the time-varying
case is the same as in the invariant one (see, e.g., [12] and [19]), but
the proof is slightly different since the Binet–Cauchy theorem does
not hold in case of non commutative fields.

1The property holds even when this assumption is released. To simplify the
proof, we consider here only the full rank case.

Proposition 2: Let G1(s) 2 F
l�r , G2(s) 2 F

r�m be transfer
matrices of rankr. Thenc1(G) = c1(G1)+c1(G2), whereG(s) =
G1(s)G2(s).

Proof: Set � = 1=s and letG(1=�) = G1(1=�)G2(1=�).
Consider the Smith–MacMillan form at infinity ofG1: there
exist unimodular matricesV1 2 S

l�l, V2 2 S
r�r, such

that V �1
1 (�)G1(1=�)V2(�) =

G1(�)

0
, where G1(�) =

diagf�� ; . . . ; �� g. It follows that c1(G1) = � r

i=1 �i. Sim-
ilarly, we construct the Smith–MacMillan form at infinity ofG2:
there exist unimodular matricesW1 2 S

r�r, W2 2 S
m�m,

such that W�1
1 (�)G2(1=�)W2(�) = [G2(�) 0 ], where

G2(�) = diag f�� ; . . . ; �� g. It follows that c1(G2) =

� r

i=1 �i. Thus, G can now be written asG(1=�) =

V1(�)
G1

0
V �1
2 W1(�)

U(�)

[G2 0 ]W�1
2 (�), whereU(�) 2 Sr�r is

unimodular andG1(�)U(�)G2(�) is non singular. LetU1 2 S
r�r,

U2 2 S
r�r be unimodular matrices such that

U�11 (�)G1(�)U(�)G2(�)U2(�) = diag f�� ; . . . ; �� g (5)

is the Smith–MacMillan form at infinity of G1UG2. Obvi-

ously,
diag f�� ; . . . ; �� g 0

0 0
is the Smith–MacMillan

form at infinity of G and , by taking the “Dieudonné determi-
nant” [1] of the left- and the right-hand sides of (5), it results
� � = �� +���+� , from which the conclusion
follows:

c1(G) = �

r

i=1

�i = �

r

i=1

(�i + �i) = c1(G1) + c1(G2):

III. EXACT MODEL MATCHING FORTIME-VARYING SYSTEMS

A. Necessary and Sufficient Condition for the Existence of a Proper
Solution

We are now ready to formulate and solve the exact model-matching
problem in the time-varying case. The formulation is inherited from the
time-invariant case [21], [11], [15].

Exact Model-Matching Problem:Given the transfer matrices
A(s) 2 Fm�r,m � r,B(s) 2 Fl�r , findG(s) which satisfies (1).

Theorem 1: Suppose that2 rank(A) = rank(F), where

F (s)
�
=

B(s)

A(s)
. The exact model-matching problem has a proper

solution iff c1(A) = c1(F ).
Proof: The results settled in Section II-B allows us to conserve

the same guideline as in [12], [15], and [19]: factorizeF asF (s) =
B(s)

A(s)
=

B(s)

A(s)

F (s)

Q(s) where thepole and the zeroat infinity of

F (s) have degree zero andQ(s), F (s) are full rank. Then, (1) can be
written as

G(s)A(s) = B(s) (6)

2This condition is necessary and sufficient for (1) to have a solution. Usually
it is assumed that has full column rank (see, e.g., [6] and [12]). Here, we
treat the general case; in a practical point of view, considering thatis not full
column rank means that the input variables are not independent. The plant model
can then be changed in order to reduce the number of physical input variables,
i.e., to obtain a full-column rank transfer matrix.
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Fig. 1. EHV line mathematical model.

whereA is left invertible; from (6) one obtains

G(s) = B(s)A
�L

(s) (7)

whereA
�L

(s) is a left inverse ofA.
By Proposition 1, thepole and the zeroat infinity of A(s) andB(s)

have degree zero. From (7), one deduces that the pole at infinity of
G has degree zero iff the zero at infinity ofA(s) has degree zero, or
equivalently, iffc1(A) = 0. Now,A(s)Q(s) = A(s), whereA(s)

andQ(s) are full-column rank and full-row rank, respectively. Using
Proposition 2, one obtains

c1(A) = c1(A) + c1(Q): (8)

As Q andF have the same structure at infinity, (8) yieldsc1(A) =

c1(A) + c1(F ). As a result,G is proper iffc1(A) = c1(F ).

B. An Industrial Example

The above condition is tested for a thyristor controlled switched ca-
pacitor (TCSC). It is a FACTS often used in the power systems industry
to control the power flow on a transmission line of an electrical grid
[13]. Roughly speaking, it consists in a thyristor controlled reactance
placed in series with the electrical line on which the power flow must
be controlled. Thus, it can be modelized as a equivalent reactance be-
tween two grid nodes which continuously varies from the initial value
� to the final one�

X(t) = �� (�� �)t: (9)

This model is used to take into account the line parameter evolution
for an upper control level of the hierarchical grid control, i.e., the elec-
trical high voltage (EHV) control which is, for instance, the control of
225-kV and 400-kV lines in France. The mathematical model used in
this case for the EHV lines is the so called�-equivalent scheme [13]
given in Fig. 1.

The equations describing the circuit in Fig. 1 are

Cv1 =i1

Cv2 =i2

v1 =R(iA � i1) +X
d

dt
(iA � i1) + v2

iA � i1 =iB + i2: (10)

It has been shown in [5] that in order to control the circuit in Fig. 1
without impulsive motions, two currents have to be chosen as inputs.
Let us takeu = [ iA iB ]T andy = [ v1 v2 ]

T . Let us normalizeC,

settingC = 1 and assume that the value ofR is neglectible (R = 0).
The transfer functionA(s) from u to y is

A(s) =
D�1(s)N(s) �D�1(s)

�D�1(s)N(s) + s�1 D�1(s)� s�1
(11)

where D(s) = [2 + _X + Xs]s, N(s) = 1 + _Xs + Xs2

and X(t) is given by (9). We wonder whether there exists a
proper transfer matrixG(s) satisfying (1) withB(s) of the form:

B (s) =
k1s

�1 0

0 k2s
�1

. In other words, we try to find a feed-

forward compensator to decouple the transferu 7! y and to retrieve
the usual time invariant relation between voltage and current as in
the first two equations of (10). Set� = 1=s and compute first the
Smith–MacMillan for at infinity ofA

A
1

�
=

D�1 1

�
N 1

�
�D�1 1

�

�D�1 1

�
N 1

�
+ � N�1 1

�
� �

(12)

whereD(1=�) = (2 + _X)=� +X=�2,N(s) = 1 + _X=� +X=�2.
Using the commutation rule (4), one obtains (13), as shown at the
bottom of the page, withP (�) = � � (� � �)t + (2 � �)�. Since
P (�) is a unit ofS[7],it can be skipped from (13) when looking for the
Smith–MacMillan form. Moreover, using the three classic elementary
column and row operations [4], one can further transform (13) to finally

obtain the Smith–MacMillan form
1 0

0 �
, hence,c1(A) = 1. Sim-

ilar calculations yieldc1
B

A
= 1. Therefore, by Theorem 1, the

exact model-matching problem admits a proper solution in this case.

IV. CONCLUDING REMARKS

The exact model-matching problem has been formulated for linear
time-varying systems and a necessary and sufficient condition for
the existence of a proper solution has been given. This contribution
proves that the formalism introduced in [2]–[4] to study the linear
time-varying systems and particularly their structure at infinity is
appropriate to extend many classical topics of linear constant systems
to the time-varying case. An immediate extension of the present
work is to define a procedure to systematically compute the proper
solution of the exact model-matching problem in the general case of
multiple-input–multiple-output. In the case of large-scale systems,
the calculations become rather tedious if made by hand, but are well
defined and can be formalized in symbolic computing algorithms.
In addition, the decoupling problem, which is closely related to the
model-matching problem can be solved in the time-varying case with
this formalism, as shown through the example of Section III.B.

A
1

�
=

P�1(�)[�� (�� �)t� �� + �2] �P�1(�)

P�1(�)[��+ (�� �)t+ (�+ � � (�� �)t)� � (1� �)�2 + �3] P�1(�)[1� P (�)�]
(13)
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Global Adaptive Control of Nonlinearly
Parametrized Systems

Xudong Ye

Abstract—In this note, we consider global adaptive control of nonlinearly
parametrized systems in parametric-strict-feedback form. Unlike previous
results, we do not requirea priori bounds on the unknown parameters,
which is as in the linear parametrization case. We also allow unknown
parameters to be time-varying provided they are bounded. Our proposed
adaptive controller is a switching type controller, in which the controller
parameter is tuned in a switching manner via a switching logic. Global sta-
bility results of the closed-loop system have been proved.

Index Terms—Adaptive control, logic-based switching, nonlinear param-
eterization, nonlinear systems.

I. INTRODUCTION

The past decade has witnessed many achievements in the design
of adaptive controllers for nonlinear systems. Among them perhaps
the most significant one is the development of global adaptive con-
trollers for nonlinear systems in so-called parametric-strict-feedback
(PSF) form [1] and [2]. In the original PSF form, the unknown parame-
ters are required to enter the state equations linearly. Later, some efforts
are made to remove such a linear parametrization requirement. In [3]
and [4], the problem of adaptive control of nonlinearly parametrized
PSF systems was first considered. However, their proposed adaptive
controllers ensure only local stability and moreover, requirea priori
bounds on the unknown parameters. Recently, a new error model ap-
proach is invented to deal with nonlinear parametrization problem [5],
which can be applied to develop global adaptive controllers for non-
linearly parametrized PSF systems [6]. However, their approach also
requires a priori knowledge of parametric bounds. Note that an im-
portant advantage of adaptive control over robust control is that it can
dispense with the need to knowa priori bounds on the unknown pa-
rameters. Note also that for the original (i.e., linearly parametrized)
PSF systems, knowing parametric bounds is not a necessary condition
for developing global adaptive controllers. These two points motivate
us to consider global adaptive control of nonlinearly parametrized PSF
systems without a priori knowledge of parametric bounds.

This note is organized as follows. In Section II, we describe the class
of nonlinear systems to be considered. In Section III, we present the
adaptive control design. The stability of the closed-loop system is an-
alyzed in Section IV and a simulation example is given in Section V.
Finally, this note is concluded in Section VI.

II. PROBLEM FORMULATION

In this note, we will consider global adaptive control of the following
nonlinearly parametrized PSF systems:

_x1 = x2 + f1(x1; �)

_x2 = x3 + f2(x1; x2; �)
...

_xn = u+ fn(x1; . . . ; xn; �)

(1)
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