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Abstract

A linear dynamical system resulting from the interconnec-
tion of subsystems is considered. Assuming that this intercon-
nection is ”temporal”, i.e. starting at a given initial time in
the continuous-time case and ending at a given final time in
the discrete-time case, such a system is also said to be ”tem-
poral”. Temporal interconnections generate ”uncontrollable im-
pulsive behaviors” which are not found in the classical theory,
though they have been studied for more than 20 years in the case
of systems with constant coefficients. Determining the structure
of the impulsive behavior of a temporal system is a key problem
in the theory of linear dynamical systems. It is addressed here,
using module theory, for systems with time-varying coefficients,
in both the continuous- and discrete-time cases. These two cases
are merged into a general framework. The impulsive behavior
of a temporal system satisfying a suitable regularity condition
has a structure which is fully elucidated. It turns out that the
determination of this structure in practice is an algebraic —not
an analytic— problem, which makes the calculations simpler and
easier to computerize. The theory is illustrated through several
examples.

1 Introduction

Continuous- or discrete-time systems exhibit ”impulsive motions”, i.e.,
in the continuous-time case, linear combinations of the Dirac distribution
δ and its derivatives [35], [36], and in the discrete-time case, backward
solutions with finite support [21], [24]. The space spanned by all impul-
sive motions of a system is called its ”impulsive behavior” and is denoted
as B∞. The purpose of this paper is to study the structure of B∞, for

1



a system with constant or time-varying coefficients. Let us explain the
importance of this structure.
Consider the following continuous-time system with constant coeffi-

cients, in ”descriptor form” [32]:

(E∂ −A)x = Bu, t ∈ T0 (1)

where the function u is the ”system input”, assumed to be known, x is
the ”descriptor vector” and ∂ is the ”continuous-time derivative”, i.e.
the distributional derivative with respect to time t; E,A and B are ma-
trices belonging to <q×q,<q×q and <q×m, respectively. Suppose that
T0 = [0,+∞[, which means that the system is formed at time t = 0 (as
a result, for example, of switching or of component failure in some other
system [35]; such events are frequent in electrical circuits, mechanics,
hydraulics, etc. [13]). Therefore, let us call (1) a ”temporal system”
(to point out the difference with the classic situation where T0 = <, and
where system (1) is thus perpetually existing). Assume that the matrix
pencil Es − A is regular (i.e. that the polynomial |Es−A| is nonzero
[12]) for (1) to have solutions [18]. If E is singular, the restrictions
to T0 of the components xi of x contain impulsive motions with coef-
ficients only depending on the ”initial values” xi (0

−), when the latter
are incompatible with the equation (E∂ −A)x = Bu. These impulsive
motions, which are said to be ”uncontrollable” due to their complete
dependence on initial conditions, span the ”uncontrollable part” B∞,u of
B∞. To know what event arose at time t = 0, the values of the above-
mentioned coefficients are not significant, as opposed to the structure of
B∞,u. Setting T = <, the temporal system (1) can be written in the
more general form ½

B (∂)w (t) = e (t) , t ∈ T
e (t) = 0, t ∈ T0

(2)

where B (∂) is a q × k matrix (k = q + m) with entries in < [∂] and
w is the column-matrix whose entries are the system variables (here
the components xi and ui of x and u, respectively); the function e has
any restriction to the complement T \ T0 of T0 in T. It is known
that the structure of B∞,u is completely determined by the structure of
the ”zeros at infinity” of the matrix B (∂) ([33], [18]) —a notion which
is explained below. Therefore, the characterization of the structure of
B∞,u is not an analytic problem (involving derivations, integrations, etc.,
in the framework of the theory of distributions), but an algebraic one,
which makes the calculations much simpler and easier to computerize.
A similar problem is posed by discrete-time systems [21], [22]. The

variables are now sequences (denoted as functions defined on the set
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of integers Z). Let q be the usual ”shift forward operator” w (t) −→
w (t+ 1), define the ”discrete-time derivative” ∂ = q − 1, and with
this notation consider the discrete-time system with constant coefficients
(1). Assume that the sequence u (again called the ”input”) is known
and that the matrix pencil Ez − A is regular. Suppose that the ma-
trix E is singular (which means that the system is noncausal) and that
T0 = {...,−2,−1, 0}, i.e. that the system exists only up to the ”final
time” t = 0 (a phenomenon which arises in various fields: for example
the ”Leontief model”, in economy, describes the time pattern of pro-
duction in several interrelated production sectors; it is of the form (1),
possibly noncausal, and valid up to a finite final time [23]). For the
same reason as above, let us call (1) (or (2) which is the most general
form) a ”temporal system”. Due to the fact that (1) is noncausal, the
restrictions to T0 of the variables xi contain backward solutions with
finite support (i.e. impulsive motions), with coefficients only depend-
ing on the ”final values” xi (1). As in the continuous-time case, these
impulsive motions, said to be uncontrollable due to their complete de-
pendence on final conditions, span the ”uncontrollable part” B∞,u of
B∞. Considering the temporal system (2), where T = Z and where the
sequence e has any restriction to T \ T0, the structure of B∞,u is a key
problem. One can deduce from recent results of the literature that this
structure is determined by the ”structure at infinity” of the matrix B (∂)
([1], [16], [17]); more specifically, it is shown below that the structure of
B∞,u reflects the structure of the zeros at infinity of B (∂), exactly as in
the continuous-time case.
In the existing literature, only the case of systems with constant coef-

ficients has been treated, and two distinct theories have been developed
to prove the above-mentioned connection between the structure of B∞,u

and that of the zeros at infinity of B (∂): one for the continuous-time,
using the Laplace transform, and the other for the discrete-time, us-
ing the Z-transform. In both cases, complicated calculations yield a
very simple structure theorem, without really explaining it. These cal-
culations become inextricable in the case of systems with time-varying
coefficients, although these systems raise the same problem ([24], [6],
[38]); therefore, no general result on the structure of impulsive behaviors
has been obtained in that case.
The problem of determining the structure of the impulsive behavior

B∞ (and of its uncontrollable part B∞,u) of a linear temporal system with
constant or time-varying coefficients is solved here using an algebraic
approach based on module theory. The continuous- and discrete-time
cases are merged into a general framework. In the case of constant co-
efficients, complicated calculations are avoided, and the existing theory
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is both clarified and completed. In the case of time-varying coefficients,
one difficulty arises from singularities which may occur, typically when-
ever a system coefficient annihilates a part of an impulsive motion when
vanishing (e.g., in the continuous-time case, an impulsive motion propor-
tional to δ is annihilated by a nonzero coefficient a such that a (0) = 0).
A temporal system with no such problem is said to be ”regular”. We
show that, for regular temporal systems, the structure of B∞,u is still
completely determined by the structure of the zeros at infinity of the
matrix B (∂) (once this notion has suitably been generalized [5], [25]).
The notion of ”temporal interconnection” is useful for the sequel.

Any system may be considered as resulting from the interconnection of
subsystems [30]. In the continuous-time case, a switching, a component
failure, etc., as mentioned above, are interconnections starting at a given
initial time (assumed to be zero without loss of generality, since the
origin of time can be freely chosen), i.e. only effective on T0 = [0,+∞[ ⊂
T; such an interconnection is said to be ”temporal” in what follows. In
the discrete-time case, a temporal interconnection is an interconnection
valid up to a given final time (also assumed to be zero), i.e. only effective
on T0 = {...,−2,−1, 0} ⊂ T. A temporal system results from the
temporal interconnection of subsystems. This is clear when considering
(2) which is obtained by interconnecting the system B (∂)w = e with
the trivial system ē = 0 through the temporal interconnection e (t) =
ē (t) , t ∈ T0.
The paper is organized as follows. Preliminaries are collected in

Section 2: first the mathematical tools, and then the basic notions of
system theory. Temporal systems with constant coefficients (case (I))
are studied in Section 3: using a key isomorphism, it is shown that the
structure of B∞ is identical to the structure of a space A∞, easier to
study than B∞, and whose construction is classic in homological alge-
bra. The space A∞ is also studied in Section 4 in the case when the
system coefficients are time-varying though belonging to a field (case
(II)). The assumption that the coefficients belong to a field, amounts to
discarding singularities (since coefficients which are not identically zero
cannot vanish). However, to properly define and study the impulsive
behavior B∞ of a temporal system with time-varying coefficients, one
must assume that these coefficients belong to a ring of functions (case
(III)). This case is studied in Section 5. Most of the results in Section
3 are extended to case (III) under a suitable regularity condition. Sec-
tion 6 includes the concluding remarks and summarizes the main results.
Preliminary results have already been published [2], [3].
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2 Preliminaries

2.1 Some algebra
2.1.1 Differential polynomials and formal power series

A general framework Using general differential polynomials, one
can study continuous- and discrete-time systems with constant or time-
varying coefficients in a unique framework.
Consider first the continuous-time case. Let K be a commuta-

tive Noetherian domain equipped with the continuous-time derivative
a → ȧ = da

dt
(a ∈ K), which is assumed to be an endomorphism of the

abelian group K; K is the ring to which the coefficients of the system
under study belong (and is called the ”coefficient ring”, for short). The
elements of K [∂] (where ∂ is the indeterminate introduced in Section 1)
are operators on the system variables. Let w be such a variable and
a ∈ K. From the Leibniz rule: ∂ (aw) = a∂w + ȧw; this yields the
”commutation rule”

∂a = a∂ + ȧ. (3)

Consider now the discrete-time case. The coefficient ring K
is a commutative Noetherian domain equipped with the derivative
a → aγ = aα − a, where aα (t) = a (t+ 1), assuming that α is
an automorphism of the abelian group K. Let w be a system
variable and consider the indeterminate ∂ = q − 1, as in Section
1. One has [15]: ∂ (aw) (t) = a (t+ 1)w (t+ 1) − a (t)w (t) =
a (t+ 1) (w (t+ 1)− w (t)) + (a (t+ 1)− a (t))w (t), which yields the
commutation rule

∂a = aα∂ + aγ. (4)

A derivation γ for which the commutation rule (4) holds is called
an ”α-derivation” [7]. Clearly, (3) is of the form (4) with α = 1 (i.e.
identity). Thus, the continuous- and discrete-time cases are merged
into a unique general framework, assuming that K is a commutative
Noetherian domain equipped with an α-derivation γ where α is an auto-
morphism of the abelian group K. The subring of constants of K (con-
sisting of all elements a such that aγ = 0) is denoted as k; in everything
that follows, k is a field, and, except when explicitly stated, ”space”
means ”k-vector space”.
The ring of differential polynomials with coefficients in K and in-

determinate ∂, equipped with the commutation rule (4) , is denoted by
K [∂;α, γ], as usual [7], and we set R = K [∂;α, γ].
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Three cases Let us specify the cases considered in the sequel:

(I) K =< (case of constant coefficients);

(II) K is a field;

(III) K = < [t] (in the continuous- or discrete-time case) or K = <{t}
(in the continuous-time case only). The ring < [t] is identified
with the ring of polynomial functions on the real line, and <{t}
denotes the ring of convergent power series with real coefficients.

Cases (I), (II) and (III) are studied in Sections 3, 4 and 5, respectively.

Formal power and Laurent series Set σ = 1/∂ and β = α−1;
S := K [[σ;β, γ]] denotes the ring of formal power series in σ, equipped
with the commutation rule [7]

σa = aβσ − σaβγσ, (5)

deduced from (4). Similarly, L = K ((σ;β, γ)) is the ring of formal
Laurent series in σ, equipped with the commutation rule (5). The
rings R and S can be embedded in L = K ((σ;β, γ)); all these rings are
domains (i.e. integral rings) and are noncommutative, except if K = k.
As σS = Sσ, this two-sided ideal is denoted by (σ); the units of S are the
power series whose constant term is a unit of K. The ring L is obtained
from R by ”localization at infinity” (which yields K [∂, ∂−1;α, γ], the
ring of skew Laurent polynomials [26]) and then ”completion at infinity”
(i.e. completion with respect to the (σ)-adic topology).

Properties of the rings The domains R and S are Noetherian since
so is K ([26], §§ 1.2.9, 1.4.5), therefore they are Ore ( [7], §0.8)1. In
case (III), one has the following result:

Lemma 1 Let us assume that K = < [t]. (i) Any element of L is of the
form

P
i≥0,finite bi (σ) t

i, bi (σ) ∈ < ((σ)), i.e. L is a polynomial ring with
coefficients in < ((σ)). (ii) Setting ξ = 0 in the continuous-time case
and ξ = 1 in the discrete-time one, L is equipped with the commutation
rule t a = a t+ aε, where a ∈ < ((σ)) and aε := − (ξ∂ + 1) da

d∂
. (iii) The

ring L = < ((σ)) [t; 1, ε] is a simple principal ideal domain.
1In what follows, ”noncommutative” means ”possibly noncommutative”. In addi-

tion, and with this understanding, ”field” means ”noncommutative field” (also called
”skew field” or ”division ring” by many authors), ”Ore” means ”left and right Ore”,
”Noetherian” means ”left and right Noetherian”, etc.
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Proof. (i) is obvious. (ii): By induction, for any i ∈ Z, t ∂i =
∂it−(ξ∂ + 1) i ∂i−1 = ∂it−(ξ∂ + 1) d(∂i)

d∂
. Using (i), it is easy to obtain

(ii). (iii): As ε is a 1-derivation of the field < ((σ)), L = < ((σ)) [t; 1, ε]
is a principal ideal domain ([7], §8.3). An element f of L is right
invariant if, and only if properties (a) and (b) below are satisfied ([7],
§8.3, Proposition 3.2): (a) t f = f t, which implies f ∈ < [t], according
to the commutation rule in (ii). (b) For any c ∈ < ((σ)), c f = f c;
with c = σ, this implies f ∈ < by (5). Therefore, L is simple ([7], §8.3,
Corollary 3.6).
In cases (I) and (II), R and S are principal ideal domains, S is local

with maximal ideal (σ), and L is the quotient field of S. All these rings
are commutative in case (I). k = < in cases (I) and (III).
2.1.2 Modules

Let D be a Noetherian domain with quotient field Q; DM (resp. DMf)
denotes the category of all left (resp. finitely generated left) D-modules.
Due to the Noetherian property of D, any M ∈ DMf is finitely pre-
sented, i.e. it has a presentation

E
f−→ F

φ−→M −→ 0 (6)

where, e.g., E = Dq, F = Dk (q ≤ k) and where φ : F → coker f
is the canonical epimorphism. Let M be defined by (6), let (εi)1≤i≤q
and (w

¯ i
)1≤i≤k be bases of E and F , respectively, and assume that the

elements of E and F are represented by row-matrices in those bases, as
usual in the theory of ”D-modules” [14]. Let B ∈ Dq×k be the matrix
representing f ; f is the right multiplication by B (written •B in the
literature). Setting ei = f (εi) , 1 ≤ i ≤ q, one has ei = εiB, thus

B w
¯
= e (7)

where e = [e1, ..., eq]
T and w

¯
= [w
¯1
, ...,w

¯k
]T . The moduleM = coker •B

(i.e. the module with ”matrix of definition” B) is generated by the
elements wi = φ (w

¯ i
) , 1 ≤ i ≤ k (written M = [w]D, where w =

[w1, ..., wk]
T ), such that

Bw = 0. (8)

This module M is said to be defined by generators (the elements w
¯ i
)

and relations (the rows of (8)) [29].
As D is an Ore domain, the set of torsion elements of M is a sub-

module of M [7].
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2.1.3 Matrices

Completely left coprime factorizations Let V be a matrix with
entries in D (or ”a matrix over D”, for short). Assume that V is right
regular; V is said to be completable if there exists a matrix W over D,

having the same number of columns as V , such that
·
V
W

¸
is unimodular

[7]. Left coprimeness of matrices over D is not an ambiguous notion
whenD is a principal ideal domain. In more general cases, several kinds
of left coprimeness may be defined. In this paper, the following notion
will be useful:

Definition 2 Let D and N be two matrices over D, having the same
number of rows, and assume that V :=

£
D N

¤
is right regular. The

pair (D,N) is said to be completely left coprime if V is completable.

Let B̂ ∈ Qq×k. There exist matrices D ∈ Dq×q and N ∈ Dq×k such
that D is of rank q (i.e. invertible over Q)2 and B̂ = D−1N .

Definition 3 The above pair (D,N) is said to be a completely left co-
prime factorization (CLCF) of B̂ over D, if this pair is completely left
coprime.

Remark 4 As is well known, a left coprime factorization of any matrix
B̂ ∈ Qq×k over D exists if D is a principal ideal domain, as a conse-
quence of the Smith form ( [7], Chap. 8). If D is more general, e.g., a
Noetherian domain, a completely left coprime factorization of B̂ over D
does not necessarily exist.

Smith-MacMillan form at infinity Let us consider the rings R
and S, as defined in § 2.1.1, and let B (∂) ∈ Rq×k be a matrix of rank r.
The following result is classic in case (I) [32] and has been extended to
case (II) in [5]: there exist two unimodular matrices U (σ) ∈ Sq×q and
V (σ) ∈ Sk×k, as well as integers ν1, ..., νr, ν1 ≤ ... ≤ νr, such that

U (σ)B (∂)V −1 (σ) =
·
diag {σνi}1≤i≤r 0

0 0

¸
, (9)

The matrix in the right-hand member of (9) is called the Smith-
MacMillan form at infinity of B (∂) ([34], [32]). Define the finite
sequences (µ̄i)1≤i≤r and (π̄i)1≤i≤r as: µ̄i = max (0, νi) and π̄i =

2Recall that over an Ore domain D, the row and column ranks of a matrix are
equal and coincide with the rank of this matrix over the quotient field Q: see, e.g.,
([7], §5.4, exerc. 11).
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max (0,−νi). Among the integers µ̄i (resp. π̄i), those which are nonzero
(if any) are called the structural indexes of the zeros at infinity (resp.
of the poles at infinity) of the matrix B (∂) ([5], [25]); they are put in
increasing (resp. decreasing) order and denoted by µi (1 ≤ i ≤ ρ) (resp.
πi (1 ≤ i ≤ s)).

2.1.4 Duality

Kernels Let D be the ring R or S in §2.1.1; D is a k-algebra. Let
W ∈ DM, and let M ∈ DMf be the module presented by (6), i.e.
M = coker •B. The abelian group HomD (M,W ) consisting of all
homomorphisms M → W has a canonical structure of k-vector space
and of left E-module, where E is the endomorphism ring of W , since
W is a left (E,D)-bimodule3; HomD (M,W ) is called the ”W -dual”4 of
M ([19], §19D) and is denoted as M∗. This module is E-isomorphic
to the set of all elements w ∈ W k such that Bw = 0, and is identified
with this set assuming that the generators chosen for M are those in
§2.1.2. Therefore, M∗ is the kernel in W k of the left multiplication by
B (written B• in the literature); denoting this kernel as kerB•, one can
write M∗ = kerB•. In what follows, the class of all E-modules of the
form M∗, where M ∈ DMf , is denoted as

¡
DMf

¢∗
.

The module ∆̃ Let D = S in any case considered in §2.1.1. For
any µ ∈ N (where N denotes the set of natural integers), set C̃µ =

S
(σµ)

(thus C̃0 = 0) and let δ̃
(µ−1)

be the canonical image of 1 ∈ S in C̃µ.
The S-module C̃µ is isomorphic to a submodule of C̃µ+1, under right

multiplication by σ, and δ̃
(µ)
σ = σ + (σµ+1) = σδ̃

(µ)
; identifying δ̃

(µ−1)

with σδ̃
(µ)
, C̃µ is embedded in C̃µ+1, and

C̃µ = ⊕µ
i=1Kδ̃

(i−1)
. (10)

Set
∆̃ := lim−→

µ

C̃µ = ⊕µ≥0Kδ̃
(µ)

(11)

The left S-module ∆̃ becomes a left L-module, setting σ−1δ̃
(µ)
= δ̃

(µ+1)
,

and thus a left R-module by restriction of the ring of scalars. Consid-

3An (E,D)-bimodule is a left E-module which is a right D-module (with an
associative law relating the two actions). In this paper, where all modules are
left modules a ”left (E,D)-bimodule” is a left E-module which is a left D-module
provided that the rings E and D are compatible, i.e. such that ed = de, ∀e ∈ E,
∀d ∈ D (with an obvious associative law).

4It should not be confused with the ”algebraic dual” HomD (M,D), which will
not be used in this paper.
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ering σ and ∂ as operators on ∆̃, σ is a left inverse of ∂, but σ has no
left inverse since σδ̃ = 0.
Assuming that K is a field (case (II)), the only simple S-module is

(σ), and the S-module ∆̃ is the canonical cogenerator of SM ([19], §3).
Assuming that K = < (case (I)), S is commutative. According to

Matlis’ theory ([19], §3I), as S is complete (for the (σ)-adic topology), S
and the endomorphism ring E of ∆̃ are isomorphic (as rings), thus these
two rings are identified.

A useful lemma In the lemma below, D is a Noetherian domain, W
is a D-module and E is the endomorphism ring of W .

Lemma 5 (i) Consider the following relation, denoted as ' , between
two elements of

¡
DMf

¢∗
: M 0 ' N 0 if (and only if) there exist two D-

modules M and N in DMf such that M 0 =M∗, N 0 = N∗ and M ∼=D N ;
it is an equivalence relation, and M 0 ' N 0 implies M 0 ∼=E N 0. (ii) Let
d ∈ D be such that dD = D d, and let M ∈ DMf . The set dM is
a submodule of M and dM∗ = (dM)∗. (iii) Let d be as in (ii) and
M ∈ DMf . If M is such that dM = 0, then dM∗ = 0. Conversely,
assuming that W is a cogenerator, if dM∗ = 0, then dM = 0. (iv)
Let 0 6= d be as in (ii), and let n and m be natural integers such that
M∗ ' Wm, N∗ ' Wn and dM∗ = dN∗; if W is a cogenerator, then
M∗ = N∗.

Proof. (i): The relation ' is obviously an equivalence relation.
Assuming that M∗ ' N∗, there exists a D-isomorphism j : M→̃N .
Let j∗ : N∗ → M∗ be defined as: j∗λ := λ j, λ ∈ N∗; j∗ is an E-
isomorphism. (ii): As dD = D d, dM is an S-submodule of M . Let
λ ∈ (dM)∗; for any m ∈ M , λ (dM) = d λ (m) = (d λ) (m). The
mapping (dM)∗ 3 λ→ d λ ∈ dM∗ is a canonical E-isomorphism under
which the E-modules (dM)∗ and dM∗ are identified. (iii) is an obvious
consequence of (ii). (iv): There exist two free D-modules Φm

∼=D Dm

and Φ0n ∼=D Dn such M∗ = (Φm)
∗ and N∗ =

¡
Φ
0
n

¢∗
. By (ii), d (Φm)

∗ =
(dΦm)

∗ and d (Φ0n)
∗ = (dΦ0n)

∗; therefore, assuming that dM∗ = dN∗,
one obtains (dΦm)

∗ = (dΦn)
∗, which implies that dΦm = dΦ0n if W is a

cogenerator ([19], (19.45)). In addition, dΦm
∼=D Φm and dΦn

∼=D Φ0n
(under multiplication by d), thus Φm

∼=D Φ0n, which implies n = m
since any Noetherian domain has invariant basis number. Thus, there
exist two unimodular matrices U and V belonging to Dn×n such that
Φn = U Dn and Φ0n = V Dn, hence dU Dn = d V Dn. Therefore,
U Dn = V Dn since D is a domain, i.e. Φn = Φ0n. This implies that
M∗ = (Φn)

∗ =
¡
Φ
0
n

¢∗
= N∗.
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2.2 Systems theory
2.2.1 Linear systems and their interconnections

Smooth linear systems According to Fliess [8], a linear system is a
module M ∈ RMf . It has an equation of the form

B (∂)w = 0, (12)

similar to (8) . This is a ”cokernel representation”, since M =
coker •B (∂) . In the context of this paper, this module M is called,
more specifically, the smooth system defined by (12) (or by the matrix
B (∂)). The ”module of uncontrollable poles” of M (also called its
”module of input-decoupling zeros” [4]) is its torsion submodule T (M).
The system M is said to be controllable if it is torsion-free [8]5. Con-
sidering two R-submodules M1 and M2 of M , such that M1 ⊂ M2, one
has

Q2
∼=R

Q1

M2/M1
,

where Q1 = M/M1 and Q2 = M/M2. Therefore, the following relation
among pairs of quotients ofM is an order relation: Q2 ≤ Q1 if (and only
if) Q2 is R-isomorphic to a quotient of Q1. Let C (M) be the set of
all quotients of M which are controllable systems, ordered by the above
relation; M/T (M) is the greatest element of C (M).

Definition 6 The system M/T (M) is called the controllable quotient
of M .6

In cases (I) and (II) in §2.1.1, as R is a principal ideal domain, there
exists a free module Φ such that

M = Φ⊕ T (M) , (13)

therefore Φ ∼=R M/T (M).
Interconnection of smooth linear systems The interconnection of
(smooth) linear systems is defined in [9]. In the case of several systems,
one may first interconnect two of them, then interconnect a third one
with the system resulting from the interconnection of the two first ones,
etc. Therefore, it is sufficient to consider the case of two smooth linear
systems M1 and M2. Their interconnection is a fibered sum [20]: let G

5There are different notions of controllability [10]; we are considering here
”torsion-free controllability”. In cases (I) and (II) in §2.1.1, and all kinds of control-
lability are equivalent since R is a principal ideal domain.

6We do not specify: the greatest controllable quotient, for short.
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be a free module in RMf and assume that there exist two morphisms
hi : G → Mi, i = 1, 2. Let H be the submodule of M = M1 ⊕ M2

generated by the elements of the form h (g) = (h1 (g) ,−h2 (g)) , g ∈ G,
i.e. H = Imh, where h = (h1,−h2). The quotient module M̆ = M/H,
writtenM1

F
GM2, is the fibered sum ofM1 andM2 overG (with respect

to the morphisms h1, h2); from the point of view of systems theory, it is
the interconnected smooth system.
Let ξ : M → M̆ be the canonical epimorphism and set h̆ = ξh, so

that
h̆ (g) = 0, g ∈ G. (14)

The system M̆ is defined by an equation consisting of the equations of
the subsystemsMi, plus the interconnection equation (14). More specif-
ically, let us assume that Mi is defined by the equation Bi (∂)w

i = 0
(i = 1, 2), where wi =

¡
wi
1, ..., w

i
ki

¢
. With respect to these presenta-

tions, the interconnection equation can be written J1 (∂) w̆1 = J2 (∂) w̆
2,

where J1 (∂) and J2 (∂) are matrices over R, with the same number of
rows and with, respectively, k1 and k2 columns. Therefore,

M̆ = coker •

B1 (∂) 0
0 B2 (∂)

J1 (∂) −J2 (∂)

 (15)

(see [9] for more details).

2.2.2 Behavioral theory

Behaviors In the behavioral theory [39], [28], one is interested in the
solutions of (12) in a space of (generalized) functions or sequences W ;
W is assumed to be an R-module. Let E be the endomorphism ring
of W and M = coker •B (∂); as already said, the set of all the above-
mentioned solutions is an E-module, written kerB (∂) •, and identified
with M∗ = HomR (M,W ). This E-module kerB (∂) • is called the
behavior (or, more specifically, in the context of this paper, the smooth
behavior) associated with M in a product of copies of W [39]7.
Generally speaking, whereas a ”system” M is a cokernel, the associ-

ated ”behavior” M∗ is the corresponding kernel (in a product of copies
of a specified ”solution space” W ). Of course, M∗ can be determined
from M ; the converse is true if W is a cogenerator since, in that case,
M∗ = N∗ implies M = N ( [27], (2.47); [19], (19.45)). If two behaviors
N∗ and M∗ are such that N∗ ⊂ M∗, N∗ is said to be a subbehavior of
M∗ ([27]).

7The terminology used in [27], [11] for the same concepts is slightly different.
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Remark 7 Let Q = M
N
be a quotient of M , and consider the short exact

sequence
0 −→ N −→M −→ Q −→ 0 (16)

As the functor HomR (.,W ) is contravariant and left exact, it yields the
exact sequence

0 −→ Q∗ −→M∗ −→ N∗

so that Q∗ can be identified with an E-submodule (i.e. a subbehavior) of
M∗. Assuming that W is injective, one obtains the short exact sequence

0 −→ Q∗ −→M∗ −→ N∗ −→ 0,

thus N∗ ∼=E M∗
Q∗ ; in other words, one has the correspondence quotient

←→ submodule under W -duality.

A direct sum decomposition In case (I) in §2.1.1, with W =
C∞ (<;<), considering the decomposition (13), there exist subbehaviors
M∗

c ' Φ∗ ' (M/T (M))∗ and M∗
u ' (T (M))

∗ of M∗ such that

M∗ =M∗
c ⊕M∗

u (17)

The subbehaviorM∗
c is unique and is called the ”controllable subbehav-

ior” of M∗, whereas the subbehavior M∗
u (unique up to isomorphism) is

”uncontrollable”: see [28], Sect. 5.2. This means that the elements of
M∗

c are ”free” (i.e. subject to no relation) whereas those of M
∗
u satisfy

an autonomous differential equation and are completely determined by
their initial conditions. The correspondence between the decomposi-
tions (13) and (17) is partly explained by Remark 7, since the module
C∞ (<;<) is injective. It is further explained below in a slightly different
context (see Proposition 18).

3 Case (I)

It is assumed in this section that K =< (case (I) in §2.1.1). The endo-
morphism ring E of the S-module ∆̃ is identified with S, according to
Matlis’ theory (see §2.1.4).

3.1 A key isomorphism
3.1.1 Continuous-time case

Interconnecting two continuous-time systems from time 0 only, consists,
from the analytic point of view, in multiplying a function, such as the
function e in the first row of (2), by 1 − Υ, where Υ is the Heaviside
function (i.e. Υ (t) = 1 for t > 0 and 0 otherwise). Let W = C∞ (<;<)
and set

∆ = ⊕µ≥0< δ(µ) (18)
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where δ is the Dirac distribution. The R-module generated by S0 :=
(1−Υ)W is (as <-vector space): S = S0 ⊕ ∆. The operator ∂ is an
automorphism of the <-vector space S, and σ = ∂−1 is the operator
defined on S by: (σw) (t) =

R t
+∞w (ς) dς. The space S is an L-vector

space (and thus an S-module which is an R-module, by restriction of
the ring of scalars), and S0 is a S-submodule of S. The R-module ∆
is not an S-module, but ∆ ∼=< S

S0
:= ∆̄; ∆̄ is clearly an L-vector space

(and thus an R-module which is an S-module). The nature of the above
isomorphism, denoted as τ , can be further detailed:

Lemma 8 The isomorphism τ , defined as: ∆ 3 λ δ
v−→ λ δ̄ ∈ ∆̄, is

R-linear.

Proof. First, notice that any element of∆ (resp. ∆̄) can be uniquely
expressed in the form λ δ (resp. λ δ̄) for some λ ∈ R, thus τ is a well-
defined Z-isomorphism. In addition, for any x ∈ ∆, such that x =
λ δ, λ ∈ R, and any µ ∈ R, τ (µx) = τ (µλ δ) = µλ δ̄ = µ τ (x) .
Therefore,

∆ ∼=R
S

S0
:= ∆̄ (19)

One has σδ = Υ − 1; setting δ̄ = τ (δ), one obtains σδ̄ = 0, thus δ̃ and
δ̄ can be identified, as well as the S-modules ∆̃ and ∆̄. As a result, by
(18), (11)

∆̃ = ∆̄ = ⊕µ≥0<δ̃
(µ)
. (20)

In the remainder of this section, the canonical epimorphism S →
S
S0
= ∆̃ is denoted as φ̃. Let θ be the <-linear projection S0 ⊕∆→ ∆;

the following diagram is commutative:

S0 ⊕∆
φ̃−→ ∆̃

↓ θ τ %

∆

(21)

3.1.2 Discrete-time case

Let Υ be the sequence defined by Υ (t) = 1 for t > 0 and 0 otherwise.
Interconnecting a discrete-time system up to time 0 only, consists, from
the analytic point of view, in multiplying a sequence, such as the se-
quence e in (2), by Υ. Let W = <Z and S0 = ΥW . Let ∆ be defined
as in (18), but where δ := ∂Υ is the ”Kronecker sequence”, such that
δ (t) = 1 for t = 0 and 0 otherwise (thus, ∆ is the R-module consisting
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of all sequences with left and finite support). The R-module generated
by S0 is (as <-vector space) S = S0 ⊕∆. The operator ∂ is an auto-
morphism of the <-vector space S, and σ = ∂−1 is the operator defined
on S by: (σw) (t) :=

Pt−1
j=−∞w (j); S is an L-vector space. The R-

isomorphism (19) still holds; the same identifications as in §3.1.1 can be
made and the same notation can be used. Obviously, the discrete-time
case is completely analogous to the continuous-time one, and these two
cases are no longer distinguished in the remainder of this section.

3.2 Impulsive systems and behaviors
3.2.1 Impulsive and pseudo-impulsive behaviors

Consider the temporal system (2), where B (∂) ∈ Rq×k.

Proposition 9 The following properties are equivalent: (i) For any e ∈
Sq
0, there exists w ∈ Sk such that (2) is satisfied. (ii) The matrix B (∂)
is right regular, i.e. q = r, where r is the rank of B (∂) over R.

Proof. (i) ⇒ (ii): If the matrix B (∂) is not right regular, •B (∂) is
not injective, i.e. there exists a nonzero element η (∂) ∈ Rq (considered
as a 1×q matrix with entries inR) such that η (∂) B (∂) = 0. Therefore,
for w ∈ Sk and e ∈ Sq

0 to satisfy (2), e must satisfy the ”compatibility
condition” η (∂) e = 0. (ii) ⇒ (i): By (9), assuming that q = r, (2) is
equivalent to £

diag {σνi}1≤i≤r 0
¤
v = h (22)

where v = V (σ)w and h = U (σ) e; (22) is equivalent to σνi vi = hi,
1 ≤ i ≤ q. For any νi ∈ Z and any hi ∈ S0, vi = ∂νi hi belongs to S.
Therefore, (i) holds because h spans Sq

0 as e spans the same space (since
S0 is an S-module).

Remark 10 The compatibility condition in the above proof is equivalent
to the necessary and sufficient condition given in ([18], Theorem 5) for
(2) to have solutions.

In the remainder of this section, the matrix B (∂) ∈ Rq×k is assumed
to be right regular.

Notation 11 For any scalar operator ω and any integer l ≥ 1, ω(l)
denotes the operator diag (ω, ..., ω), where ω is repeated l times.

Definition 12 Let W ⊂ Sk be the space spanned by the elements w
satisfying (2) as e spans Sq

0. The impulsive behavior of (2) is: B∞ =
θ(k)W.

Definition 13 The pseudo-impulsive behavior of the temporal system
(2) (or ”associated with the matrix B (∂)”) is: A∞ = τ (k)B∞.
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3.2.2 Impulsive system

Considering the Smith-MacMillan form at infinity (9) of B (∂) (with
q = r), set Π (σ) = diag {σπ̄i}1≤i≤q and Σ (σ) = diag {σµ̄i}1≤i≤q,
so that diag {σνi}1≤i≤q = Π−1 (σ)Σ (σ) = Σ (σ)Π−1 (σ). By (9),
B (∂) = A−1 (σ)B+ (σ), where A (σ) = Π (σ)U (σ) and B+ (σ) =£
Σ (σ) 0

¤
V (σ). The following result is classic (see, e.g., [37], Sect.

4.1, (43)):

Lemma 14 (i) The above pair (A (σ) , B+ (σ)) is a left coprime factor-
ization of B (∂) over S. (ii) Let

¡
A1 (σ) , B

+
1 (σ)

¢
and

¡
A2 (σ) , B

+
2 (σ)

¢
be two left coprime factorizations of B (∂) over S; then, there exists a
unimodular matrix W (σ) over S such that B+

2 (σ) = W (σ)B+
1 (σ) and

A2 (σ) =W (σ)A1 (σ).

Let (A (σ) , B+ (σ)) be any left coprime factorization of B (∂) over
S. By Lemma 14, the module M+ = coker •B+ (σ) is uniquely defined
from B (∂).

Definition 15 (i) The S-module M+ = coker •B+ (σ) is called the im-
pulsive system associated with B (∂). (ii) The torsion submodule of
M+, written T (M+), is called the module of uncontrollable poles at
infinity of the temporal system (2) (or associated with the matrix B (∂))
[5]8.

There exists a free module Φ+ ∼=S Sκ, κ = k − q, such that

M+ = Φ+ ⊕ T
¡
M+

¢
. (23)

The ascending chain of invariant factors of T (M+) (possibly empty) is
(σµρ) ⊂ ... ⊂ (σµ1); thus T + (M+) has the direct sum decomposition
into cyclic indecomposable submodules:

T (M+) ∼=S
ρM

i=1

C̃µi . (24)

The connection between the pseudo-impulsive behavior A∞ and the
impulsive system M+ is given by the following theorem, where (.)∗ :=

HomS

³
., ∆̃

´
:

8It is called the module of input-decoupling zeros at infinity in the cited reference
(in accordance with the terminology introduced in [4]), but this denomination should
be reserved to the case where the inputs of the system have been chosen among its
variables.
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Theorem 16 A∞ = (M+)∗ .

Proof. By Definition 13 and the commutativity of the diagram (21),
A∞ is the E-module (or the S-module, since E and S are identified)
consisting of all elements w̃ = φ̃(k)w for which there exists h ∈ Sq

0 such
that (22) is satisfied. With the notation in the proof of Proposition
9, this equation is equivalent to σνi vi = hi, 1 ≤ i ≤ q. For any index
i such that νi ≤ 0, vi = σ−νi hi belongs to S0, thus ṽi = 0 (where
ṽi := φ̃ vi). Therefore, A∞ is the S-module consisting of all elements
w̃ = V −1 (σ) ṽ such that ṽ ∈ ∆̃k satisfies

£
Σ (σ) 0

¤
ṽ = 0; as a result,

A∞ = kerB+ (σ) •.

Remark 17 According to Theorem 16, the space A∞ is a ”behavior” in
the sense specified in §2.2.2, i.e. a kernel, whereas the space B∞ cannot
be expressed in a so simple way (in this sense, there is an abuse of lan-
guage in the expression ”impulsive behavior”). This is why the notion
of ”pseudo-impulsive behavior” is very useful. The notion of ”subbe-
havior” of a pseudo-impulsive behavior A∞ is defined in accordance with
the general definition in §2.2.2.

3.2.3 Structure of impulsive behaviors

The following result is analogous to the direct sum decomposition in
§2.2.2.

Proposition 18 (i) There exist subbehaviorsA∞,c ' (Φ+)∗ andA∞,u '
(T (M+))∗ of A∞ such that A∞ = A∞,c ⊕A∞,u. (ii) The subbehavior
A∞,c satisfying this property is unique and such that A∞,c

∼=S ∆̃κ (A∞,c

is called the ”controllable pseudo-impulsive behavior”). (iii) A∞,u
∼=SQρ

i=1 C̃µi (this subbehavior, unique up to S-isomorphism, is said to be
”uncontrollable”).

Proof. (i): By (23), there exists a canonical Z-isomorphism j∗ :
A∞ → (Φ+)∗ × (T (M+))∗ given by j∗ λ = (λ j1, λ j2), where j1 : Φ+ →
M+ and j2 : T (M+)→M+ are the canonical injections ([29], Theorem
2.4). Set A∞,c = j∗−1

¡
(Φ+)∗ × 0

¢
and A∞,u = j∗−1

¡
0× (T (M+))∗

¢
.

Then, A∞ = A∞,c ⊕ A∞,u and by Lemma 5(i), A∞,c ' (Φ+)∗ and
A∞,u ' (T (M+))∗. (ii): As E = S, A∞,c

∼=S (Φ+)∗ ∼=S ∆̃κ. By
Lemma 5(iii), there exists a natural integer µ such that σµA∞,u = 0,
thus σµA∞ = σµA∞,c. Assuming that there exist two other S-modules
A0∞,c ' (Φ+)

∗ and A0∞,u ' (T (M+))∗ such that A∞ = A0∞,u⊕A0∞,c, one
obtains σµA∞,c = σµA0∞,c, thus A∞,c = A0∞,c by Lemma 5(iv), since ∆̃
is a cogenerator (see §2.1.4). (iii): A∞,u

∼=S T ((M+))∗ ∼=S
Qρ

i=1 C̃
∗
µi
by

(24) and C̃∗µi = C̃µi, according to Matlis’ theory.
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For any integer µ ≥ 1, set

Cµ = τ−1
³
C̃µ

´
= ⊕µ

i=1<δ(i−1). (25)

The following theorem is an obvious consequence of Proposition 18:

Theorem 19 Let us consider the temporal system with matrix B (∂)
(assumed to be right regular). Its impulsive behavior B∞ can be expressed
as: B∞ = B∞,c ⊕ B∞,u, where B∞,c := τ−1(k)A∞,c

∼=< ∆κ and B∞,u =

τ−1(k)A∞,u
∼=<

Qρ
i=1Cµi (the space B∞,c, which is uniquely defined, is

called the ”controllable impulsive behavior”, and the impulsive behavior
B∞,u, unique up to <-isomorphism, is said to be ”uncontrollable”).

3.2.4 Temporal interconnections

More details about temporal interconnections can now be given. Con-
sider two temporal systems½

Bi (∂)w
i (t) = ei (t) , t ∈ T

ei (t) = 0, t ∈ T0

(i = 1, 2). They can be interconnected; the matrices J1 and J2 in (15)
are assumed to have their coefficients in <. According to Sect. 1 and
§2.2.1, we are led to the following definition:

Definition 20 The interconnected temporal system is defined by½
B (∂)w (t) = e (t) , t ∈ T

e (t) = 0, t ∈ T0

where the matrix B (∂) :=

B1 (∂) 0
0 B2 (∂)
J1 −J2

 is assumed to be right

regular; J1 and J2 are called the interconnection matrices.

One has the following result:

Theorem 21 The impulsive system M+ of the interconnected temporal
system is defined as

M+ = coker •

B+
1 (σ) 0
0 B+

2 (σ)
J1 −J2

 (26)

where
¡
Ai (σ) , B

+
i (σ)

¢
is any left coprime factorization over S of Bi (∂)

(i = 1, 2).
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Proof. Set

B+ (σ) =

B+
1 (σ) 0
0 B+

2 (σ)
J1 −J2

 , A (σ) =

A1 (σ) 0 0
0 A2 (σ) 0
0 0 Ip


where p is the number of rows of the matrices J1 and J2. Obviously,
(A (σ) , B+ (σ)) is a left coprime factorization over S of B (∂); therefore,
the proposition is proved, according to Definition 15.

Remark 22 By Theorem 21 and (15), M+ can be written as a fibered
sum of the impulsive systems M+

i = coker •B+
i . In other words, the

impulsive system of the interconnected temporal system is obtained by
interconnecting the impulsive systems of the temporal subsystems.

4 Case (II)

It is assumed in this section that the ”coefficient ring” K is a field (case
(II) in §2.1.1). As said in Section 1, assuming that the coefficients are
time-varying but belong to a field amounts to discarding singularities.
Nevertheless, there is no natural definition of the impulsive behavior of
a temporal system in the present case and the key isomorphism τ in
Lemma 8 is no longer valid. The results in this section are essentially
formal and may be viewed as an introduction to those in Section 5.
Let B (∂) ∈ Rq×k be a right regular matrix. According to §§2.1.1,

2.1.3, the statement in Lemma 14 remains valid. Therefore, the follow-
ing definitions make sense (the first one was already given in [5]):

Definition 23 The impulsive system and the module of uncontrollable
poles at infinity associated with the matrix B (∂) are defined as in Defi-
nition 15, i.e. as M+ and T (M+), respectively.

Definition 24 The pseudo-impulsive behavior A∞ associated with
B (∂) is defined as: A∞ = (M+)∗, where (.)∗ := HomS

³
., ∆̃

´
.

Matlis’ theory does no longer apply in the present context, thus the
ring S and the endomorphism ring E of the S-module ∆̃ must be distin-
guished. However:

Proposition 25 For any natural integer µ, C̃∗µ = C̃µ.

Proof. For µ = 0, C̃µ = C̃∗µ = 0. For µ ≥ 1, C̃∗µ is the set of all
elements x ∈ ∆̃ such that σµx = 0. Obviously, δ̃

(i−1)
belongs to C̃∗µ if,
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and only if 1 ≤ i ≤ µ. By (10), C̃∗µ ⊂ C̃µ. Let us prove by induction the
reverse inclusion. By (5), for any a ∈ K, σaδ̃ =

¡
aβσ − σaβγσ

¢
δ̃ = 0,

which implies that C̃1 = Kδ̃ ⊂ C̃∗1 . Assuming that C̃µ ⊂ C̃∗µ, µ ≥ 1, let
a ∈ K; then, σµ+1aδ̃(µ) = σµ

¡
aβ − σaβγ

¢
δ̃
(µ−1)

; by hypothesis, aβ δ̃
(µ−1)

and σaβγ δ̃
(µ−1)

belong to C̃∗µ, thus σ
µ+1aδ̃

(µ)
= 0, which implies that

C̃µ+1 ⊂ C̃∗µ+1.
The direct sum decompositions (23) and (24) are correct [5] and ∆̃

is a cogenerator of SM. Therefore, by Proposition 25, one has the
following result, in place of the statement of Proposition 18:

Proposition 26 (i) There exist subbehaviorsA∞,c ' (Φ+)∗ andA∞,u '
(T (M+))∗ of A∞ such that A∞ = A∞,c ⊕A∞,u. (ii) The subbehavior
A∞,c satisfying this property is unique and such that A∞,c

∼=E ∆̃κ (A∞,c

is called the ”controllable pseudo-impulsive behavior”). (iii) A∞,u
∼=EQρ

i=1 C̃µi (this subbehavior, unique up to E-isomorphism, is said to be
”uncontrollable”).

5 Case (III)

5.1 Impulsive behavior of a temporal system with
time-varying coefficients

The key isomorphism valid again Case (III) in §2.1.1 is now con-
sidered. In the case of continuous-time temporal systems, let us slightly
modify the definition of the spaces W,S0 and S in §3.1.1 (in the case
of discrete-time temporal systems, their definition, as given in §3.1.2, is
left unchanged):
For any integer n ≥ 1, let Wn = C∞ (In;<), where In =

¤
− 1

n
,+∞

£
.

As In+1 ⊂ In, W := lim
→

Wn is the space of germs of C∞ functions on

an open connected neighborhood of [0,+∞[ . Let S0 = (1−Υ)W and
S = S0 ⊕ ∆, where ∆ is defined by (18). The space S is still the R-
module generated by S0, and the ”continuous time derivative” ∂ is an
automorphism of the <-vector space S. For any w ∈ S, there exists
n ≥ 1 such that w ∈ (1−Υ)Wn ⊕∆, thus (σw) (t) :=

R t
+∞w (ς) dς is

defined for any t ∈ In; σ is an automorphism of S, and σ = ∂−1.
As in Section 3, in both the continuous- and discrete-time cases, S0

and S are S-modules and S is an L-module (a property which was lost
in Section 4). The canonical S-linear epimorphism S → S

S0
:= ∆̄ is

denoted as φ̄.

Proposition 27 (i) For any natural integer µ, the <-vector space Cµ :=Lµ
i=1K δ(i−1) satisfies the following equality: Cµ =

Lµ
i=1< δ(i−1). (ii)
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The <-vector space∆ defined by (18) has a natural structure ofR-module
and ∆ =

L
µ≥0K δ(µ). (iii) The quotient ∆̄ is an L-module (and thus

an R-module which is an S-module, by restriction of the ring of scalars),
and it satisfies the following equality: ∆̄ =

L
µ≥0K δ̄

(µ)
=
L

µ≥0< δ̄
(µ).

(iv) The R-isomorphism τ defined as in Lemma 8 and (19) still holds
and, setting C̄µ = τ (Cµ), one has C̄µ =

Lµ
i=1K δ̄

(i−1)
=
Lµ

i=1< δ̄
(i−1).

Proof. (i): Obviously,
Lµ

i=1< δ(i−1) ⊂
Lµ

i=1K δ(i−1). Let us prove
the converse by induction. Let a ∈ K; as aδ = a (0) δ (in both
the continuous- and discrete-time cases), K δ = < δ. Assuming thatLµ

i=1K δ(i−1) ⊂
Lµ

i=1< δ(i−1), let a ∈ K. One has aδ(µ) = a∂δ(µ−1);
setting a = bα, one obtains aδ(µ) = (∂b− bγ) δ(µ−1) by (4), and by hy-
pothesis bδ(µ−1) ∈

Lµ
i=1< δ(i−1), thus ∂bδ(µ−1) ∈

Lµ+1
i=1 < δ(i−1). Finally,

aδ(µ) ∈
Lµ+1

i=1 < δ(i−1), thus
Lµ+1

i=1 K δ(i−1) ⊂
Lµ+1

i=1 < δ(i−1). (ii) is an
obvious consequence of (i), since ∆ = lim−→ Cµ. (iii) and (iv) are then
clear, by the same rationale as in the proof of Lemma 8.
By Proposition 27, the diagram below (where the <-linear projection

θ is defined as in §3.1.1) is commutative and, in the present section, must
be considered in place of (21):

S0 ⊕∆
φ̄−→ ∆̄

↓ θ τ %

∆

(27)

Difficulties The structure of the ring S is not as simple as in Section
4, since S is no longer a principal ideal domain. In addition, an impor-
tant difference with the situation in Section 3 appears in the following
proposition:

Proposition 28 Let ψ : ∆̃ → ∆̄ be defined as: ψ
³
λ δ̃
´
= λ δ̄, where

λ ∈ R. (i) ψ is an S-epimorphism. (ii) 0 6= t C̃1 ⊂ kerψ.

Proof. (i): Any element of ∆̃ can be uniquely expressed in the form
λ δ̃, λ ∈ R, and every element of ∆̄ can be expressed in the form λ δ̄ for
some λ ∈ R, thus ψ : ∆̃ → ∆̄ is a well-defined Z-epimorphism. Let
us show that ψ is S-linear. Let x = λ δ̃ ∈ ∆̃, and (as a result of an
Euclidean division by ∂) write λ = λ0+∂ λ1, where λ0 ∈ K and λ1 ∈ R;
then, σ x = λ1 δ̃ (since σ is a left inverse of ∂: see §2.1.4). Therefore,
ψ (σ x) = λ1 δ̄ = σ ψ (x) . (ii): As t ∈ K and C̃1 ∼=K K, t C̃1 is nonzero.
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As already said in the proof of Proposition 27(i), aδ = a (0) δ, thus

t δ̄ = 0, therefore ψ
³
t C̃1

´
= 0 since C̃1 = K δ̃.

By Proposition 28(i), ∆̄ ∼=S ∆̃/ kerψ, and by Proposition 28(ii), kerψ
is nonzero. Therefore, ∆̄ and ∆̃ cannot be identified, and (20) is no
longer true.

Impulsive behavior of a semiregular temporal system

Definition 29 (i) The temporal system (2) is said to be semiregular
if, for any e ∈ Sq

0, there exists w ∈ Sk such that (2) holds. (ii) The
impulsive behavior B∞ of a semiregular temporal system is defined as in
Definition 12.

For the temporal system (2) to be semiregular, B (∂) must be right
regular, as shown by the proof of Proposition 9. Let us further study
semiregularity, assuming that K = < [t]. Let B (∂) ∈ Rq×k be the
matrix of the temporal system (2). According to Lemma 1, there exist
two unimodular matrices Ū (t, σ) and V̄ (t, σ) over L = < ((σ)) [t; 1, ε]
and a nonzero element ' (t, σ) ∈ L such that

Ū (t, σ)B (∂) V̄ −1 (t, σ) =
·
diag {1, ..., 1, ' (t, σ)} 0

0 0

¸
.

The matrix in the right-hand side of the above equality is the Smith
form of B (∂) over L ([7], §8.1, Corollary 1.2).

Theorem 30 Assuming thatK = < [t], the temporal system (2) is semi-
regular if, and only if its matrix B (∂) is right regular and Ūq (t, σ) S

q
0 ⊂

' (t, σ) S, where Ūq (t, σ) is the last row of Ū (t, σ).

Proof. Assuming that B (∂) is right regular, (2) is equivalent to
diag {1, ..., 1,' (t, σ)} v̄ = Ū (t, σ) e, where v̄ is the vector formed from
the q first rows of V̄ (t, σ)w. The only problem is with the last compo-
nent v̄q of v̄. The equation ' (t, σ) v̄q = Ūq (t, σ) e has a solution v̄q ∈ S
for any e ∈ Sq

0 , if, and only if Ūq (t, σ) S
q
0 ⊂ ' (t, σ) S.

Corollary 31 In the continuous-time case with K = < [t], let B (∂) ∈
Rq×k be the matrix of a temporal system, and assume that B (∂) is right
regular. If the coefficient of least order of ' (t, σ) (where ' (t, σ) is
considered as an element of K

¡¡
σ; 1, d

dt

¢¢
) does not vanish at t = 0,

then the temporal system is semiregular.

Proof. The element ' (t, σ) can be written as: ' (t, σ) =P
i≥N fi (t) σ

i, where N ∈ Z, every fi (t) belongs to K = < [t] and
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fN (t) 6= 0; fN (t) is the coefficient of least order of ' (t, σ). Let us
assume that fN (0) 6= 0, and set ' (t, σ) = fN (t) u (t, σ) σ

N , where
u (t, σ) = 1− g (t, σ) and g (t, σ) = −

P
i≥N+1 (fi (t) /fN (t))σ

i−N . The
elements u (t, σ) and fN (t) are units of the ring W

££
σ; 1, d

dt

¤¤
(the for-

mer with inverse 1 +
P

j≥0 (g (t, σ))
j). In addition, σNS = S. Finally,

as S is a W
££
σ; 1, d

dt

¤¤
-module, ' (t, σ) S = S, and Ūq (t, σ) S

q
0 ⊂ S.

Example 32 Let us consider the temporal system with matrix

B (∂) =

∂ + t t 0
0 0 1
1 0 1

 .
The Smith form of B (∂) over L is diag (1, 1, t), and Ū3 (t, σ) =£
1 ∂ −∂

¤
; thus, Ū3 (t, σ) S30 = S0 ⊕ < δ. As S0 ⊕ < δ is not in-

cluded in t S, this temporal system is non-semiregular.

5.2 Regular temporal systems
5.2.1 Definition and properties of regularity

Definition 33 The temporal system (2) is said to be regular if the ma-
trix B (∂) ∈ Rq×k is right regular and has a Smith-MacMillan form at in-
finity, i.e. if there exist unimodular matrices U (σ) ∈ Sq×q, V (σ) ∈ Sk×k,
as well as integers ν1, ..., νr, ν1 ≤ ... ≤ νr, such that (9) holds with r = q.
The structural indexes of the zeros at infinity of such a matrix B (∂) are
the integers µi (1 ≤ i ≤ ρ) as defined in Section 2.1.3.

The following result is clear (by the same rationale as in the proof of
Proposition 9):

Proposition 34 A regular temporal system is semiregular.

Definition 35 SMstruc is the full subcategory of SMf whose objects are
the modules M+ of the form (23) , where T (M+) is zero or is such that
there exist natural integers ρ and µi, 1 ≤ i ≤ ρ, 1 ≤ µ1 ≤ ... ≤ µρ, for
which (24) holds.

Proposition 36 Let B (∂) ∈ Rq×k be the matrix of definition of a regu-
lar temporal system. (i) The matrix B (∂) has a CLCF (A (σ) , B+ (σ))
over S. (ii) Let (A (σ) , B+ (σ)) be any CLCF of B (∂) over S;
M+ := coker •B+ (σ) is uniquely defined from B (∂) and is an object
of SMstruc.
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Proof. (i): Let Π (σ) and Σ (σ) be the matrices as defined in the
beginning of §3.2.2. The pair

¡
Π (σ) ,

£
Σ (σ) 0

¤¢
is completely left

coprime over < [[σ]] ⊂ S. Thus, there exist matrices X (σ) , Y (σ) over
< [[σ]] such that the following matrix Q (σ) is unimodular over < [[σ]] :

Q (σ) =

·
Π (σ)

£
Σ (σ) 0

¤
X (σ) Y (σ)

¸
.

With the notation in the beginning of §3.2.2, B (∂) = A−1 (σ)B+ (σ),
where A (σ) = Π (σ)U (σ) , B+ (σ) = [Σ (σ) 0]V (σ), and where the
matrices U (σ) and V (σ) are unimodular over S. Now,

Q (σ)

·
U (σ) 0
0 V (σ)

¸
=

·
A (σ) B+ (σ)
∗ ∗

¸
(where each ”∗” denotes a non specified submatrix). As the ma-
trix in the left-hand side of the above equality is unimodular over S,
(A (σ) , B+ (σ)) is a CLCF of B (∂) over S. (ii): For the above
CLCF, coker •B+ (σ) ∼=S coker • [Σ (σ) 0]; in addition, statement (ii)
of Lemma 14 is still correct (by the same rationale as in, e.g., [37], Sect.
4.1, (43)).

5.2.2 Impulsive modules and behaviors of regular temporal
systems

Proposition 37 The S-module ∆̃ is a cogenerator for the subcategory
SMstruc.

Proof. 1) This statement means that for every nonzero f : M+ →
N+, M+ ∈S Mstruc, N+ ∈S Mstruc, there exists g : N+ → ∆̃ such that
gf 6= 0. As S ∈SMstruc, this property is equivalent to the following one:
for any N+ ∈S Mstruc and any 0 6= x ∈ N+, there exists an S-morphism
h : N+ → ∆̃ such that h (x) 6= 0 (see [19], Proposition (19.6) and the
proof of this proposition)9. 2) If N+ = C̃µ, µ ≥ 1, and 0 6= x ∈ N+,
λµ (x) = x 6= 0, where λµ : C̃µ → ∆̃ is the canonical injection. 3) Let us
prove that for any 0 6= x ∈ S, there exists an S-morphism f : S→ ∆̃ such
that f (x) 6= 0. Letm be any natural integer; the morphism f̃m : S→ ∆̃,

defined as f̃m (y) = y δ̃
(m)
, is S-linear. Writing y =

P
i≥0 yi σ

i, yi ∈ K,

one obtains f̃m (y) =
P

i≥0 yi δ̃
(m−i)

. Since 0 6= x =
P

i≥0 xi σ
i, there

exists a nonzero xj ∈ K, thus f̃j (x) 6= 0, and 3) is proved. 4) As
any N+ ∈S Mstruc is a direct sum of cyclic modules, by 2) and 3), for

9Notice that ∆̃ /∈S Mstruc. Similarly, one can prove that the module ∆̃ is injective
for the subcategoryMstruc.
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any N+ ∈S Mstruc and any 0 6= x ∈ N+, there exists an S-morphism
h : N+ → ∆̃ such that h (x) 6= 0.
By Proposition 36, the following definition is relevant:

Definition 38 The impulsive system and the module of uncontrollable
poles at infinity of a regular temporal system are defined as in Definition
15, i.e. asM+ and T (M+), respectively. Its pseudo-impulsive behavior
A∞ is defined as in Definition 24.

Proposition 39 For a regular temporal system, the statements of
Propositions 25 and 26 are valid.

Proof. The proofs of the above propositions are still valid, using
Proposition 37 for the latter.
The structure of the impulsive behavior of a regular temporal system

is now completely elucidated:

Theorem 40 Let us consider a regular temporal system with matrix
B (∂) ∈ Rq×k. Let A∞ and A∞,c be its pseudo-impulsive behav-
ior and its controllable pseudo-impulsive behavior, respectively, and let
A∞,u be an uncontrollable pseudo-impulsive behavior such as in Propo-
sition 26. (i) The impulsive behavior B∞ of the temporal system is ex-
pressed as: B∞ = τ−1(k) ψ(k)A∞ (where ψ is as defined in Proposition
28). (ii) The following decomposition holds: B∞ = B∞,c ⊕ B∞,u, where
B∞,c := τ−1(k) ψ(k)A∞,c

∼=< ∆κ and B∞,u = τ−1(k) ψ(k)A∞,u
∼=<

Qρ
i=1Cµi

(the space B∞,c, which is uniquely defined, is called the ”controllable
impulsive behavior” and the impulsive behavior B∞,u, unique up to <-
isomorphism, is said to be ”uncontrollable”).

Proof. (i): By the commutative diagram (27), τ (k)B∞ is the set of
all elements w̄ = φ̄(k)w such that B+ (σ) w̄ = 0 (as shown by the proof
of Theorem 16), thus τ (k)B∞ = ψ(k)A∞. (ii) is an obvious consequence
of Proposition 39.
Regarding interconnected temporal systems, Definition 20 is relevant.

However:

Lemma 41 The temporal system resulting from the temporal intercon-
nection of two regular temporal systems can be non-semiregular.

Proof. Consider the temporal systems defined by B1 (∂) =£
∂ + t t

¤
and B2 (∂) = 1, which are regular, and assume that the

interconnection matrices are J1 =
£
1 0

¤
and J2 = 1. The resulting

temporal system, which is the one in Example 32, is non-semiregular.
Therefore, the statement of Theorem 21 must be modified as follows:
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Theorem 42 Consider two regular temporal systems, interconnected as
in Definition 20. Assuming that the interconnected temporal system is
regular, its impulsive systemM+ is given by (26), where

¡
Ai (σ) , B

+
i (σ)

¢
is any CLCF over S of Bi (∂) (i = 1, 2).

5.3 Examples
5.3.1 A regular example

Consider the following example (in the continuous- or discrete-time
case):

B (∂) =

−1 ∂2 + t 0 0
0 0 ∂2 −1
0 1 −1 0

 (28)

and write w =
£
u1 y1 u2 y2

¤T
. This system can be viewed as the

series interconnection of System 1, with input u1, output y1 and equation
ÿ1 + ty1 − u1 = 0, with System 2 with input u2, output y2 and equation
ü2 − y2 = 0; the interconnection equation is u2 = y1. Assuming that
the interconnection is temporal, in the resulting interconnected temporal
system with input u1 and output y2, the two derivatives are ”hidden”.
It is easy to check that this temporal system is impulsively regular;
in addition, one has the following CLCF: B (∂) = A−1 (σ)B+ (σ) with
A (σ) = diag (σ2, σ2, 1) and

B+ (σ) =

−σ2 1 + σ2t 0 0
0 0 1 −σ2
0 1 −1 0


The matrix B+ (σ) is equivalent over S to

£
Σ 0

¤
with Σ =

diag (1, 1, σ2), thus M+ ∼=S S ⊕ S
(σ2)
. This impulsive system M+ is

defined by the following equations:¡
1 + σ2t

¢
y+1 − σ2u+1 = 0; u+2 − σ2 y+2 = 0; y+1 = u+2

and T (M+) = [v+]S where

σ2
¡
v+
¢
= 0, v+ = t y+1 + y+2 − u+1 . (29)

The space A∞,u is the set of all elements ṽ ∈ ∆̃ such that σ2ṽ = 0 and
A∞ = (M+)∗ is the set of all elements w̃ = [ỹ1 ũ1 ỹ2 ũ2]

T ∈ ∆̃4 such
that B+ (σ) w̃ = 0. By (29), one may write ṽ = t ỹ1 + ỹ2 − ũ1, and by
Proposition 39, A∞,u is the space spanned by ṽ = α1δ̃+α0∂δ̃ as (α0, α1)
spans R2. The space B∞,u is given by the relation B∞,u = τ−1ψA∞,u.
These calculations can also be made using Theorem 42.
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In this rather simple example, the space B∞,u can be analytically
calculated. One obtains: for t ≥ 0 in the continuous-time case10, and
for t ≤ 0 in the discrete-time one,

t y1 (t) + y2 (t)− u1 (t) = α1δ (t) + α0δ̇ (t) := v (t) (30)

where α0 := ∂00 (y1 − u2) and α1 := ∂10 (y1 − u2), which is in accordance
with the above result.
In the algebraic method we are proposing, the expression (29) of

T (M+) and of the generator v+ of T (M+) in the generators y+1 , y
+
2 , u

+
1

and u+2 of M
+ has been found using unimodular matrices, i.e. with ele-

mentary row and column operations, in a systematic way, as usual (sec-
ondary row and column operations are unnecessary [5]). This method
can be computerized and then applied to large-scale systems. This seems
much more difficult, if not impossible, with any analytic method.
This example illustrates the fact that, for impulsively regular time-

varying temporal systems as for time-invariant ones, impulsive motions
occur due to ”inconsistent initial conditions” in the continuous-time case
and to ”inconsistent final conditions” in the discrete-time one.

5.3.2 Non-regular example

The following lemma will be useful:

Lemma 43 For any a ∈ K and any integer n ≥ 0,

a δ(n) =
nX
i=0

(−1)i
µ
n

i

¶
aγ

i βn (0) δ(n−i) (31)

Proof. Noticing that γ β = β γ, (31) can be easily proved by induc-
tion. Note that in the continuous-time case, this formula is classic ([31],
(V, 3; 4)).
Consider the following example:

B (∂) =

·
− (t+ λ) ∂4 ∂ −t

1 0 0

¸
(32)

where λ = 0 (resp. λ = 4) in the continuous- (resp. discrete-) time case.
By Corollary 31, the associated temporal system is semiregular since the
Smith form of B (∂) over L is

£
I 0

¤
. The variable w1 is discontinuous

at t = 0 due to the second row, and its 4th order derivative in the
first row generates elements of ∆; the latter are annihilated or modified

10With a mild abuse of language since the signals involved here are distributions;
but as they belong to the signal space S, this notation can be justified.
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according to (31) by the left multiplication by t+λ, which explains that
the temporal system is non-regular. By (31), this temporal system has
the same impulsive behavior as the temporal system with matrix

B1 (∂) =

·
4∂3 ∂ −t
1 0 0

¸
,

which is regular; B1 (∂) has the following CLCF over S:

B1 (∂) =

·
σ3 0
0 1

¸−1 ·
4 σ2 −σ3t
1 0 0

¸
For this ”regularized temporal system”, M+ = Φ+ ⊕ T (M+) where
Φ+ ∼=S S and T (M+) = [v+]S, with

σ2
¡
v+
¢
= 0, v+ = w+2 − σtw+3 . (33)

Therefore, B∞,u is the <-subspace of ∆ spanned by δ and δ̇.

6 Concluding remarks

In this paper, impulsive behaviors of ”temporal systems” with constant
or time-varying coefficients have been studied in a general framework
which includes the continuous- and discrete-time cases.
In the existing literature, tedious calculations revealed the structure

of impulsive behaviors in the case of constant coefficients. These cal-
culations are avoided here using the key isomorphism (19), the commu-
tative diagram (21), and the ”pseudo-impulsive behavior” A∞, whose
structure is deduced by duality from the structure of a finitely gener-
ated module over the ring S (Theorem 16 and Remark 17). Theorem
19 is the main structure theorem in the case of constant coefficients;
the expression of B∞,u was already known, but its connection with the
structure of the zeros at infinity of B (∂) (§2.1.3) is now much clearer;
the direct sum decomposition of B∞ is new. Theorem 21 is new and
facilitates the calculation of the impulsive behavior of an interconnected
temporal system.
In the case of time-varying coefficients, the results of this paper are

new. The impulsive behavior is defined only for a ”semiregular temporal
system”, and, based on Lemma 1, a necessary and sufficient condition
for a temporal system to be semiregular has been given when the coeffi-
cient ring is < [t] (Theorem 30). However, the structure of the impulsive
behavior of a temporal system is easily determined only when this tem-
poral system is ”regular” (§5.2). Most of the results previously obtained
in the case of constant coefficients are then valid, with slight modifica-
tions when necessary. The isomorphism (19) is still valid, as shown by
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Proposition 27, but the commutative diagram (27) replaces (21). The-
orems 40 and 42, which are the generalizations of Theorems 19 and 21,
respectively, are the main results. Theorem 40 completely elucidates
the structure of the impulsive behavior of a regular temporal system.
The theory is illustrated through two examples; the first one (in §5.3.1)
shows the connection between the generation of uncontrollable impulsive
motions and ”temporal interconnections”. The second one (in §5.3.2)
shows that a regularization procedure (based on Lemma 43) can be used
to calculate the impulsive behavior of a semiregular temporal system
which is non-regular.
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