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Lemma 9: If (1) holds, then

'n(�) = O
n

�n

:

Proof: From (1) and ji� jj�n � jti � tj j, we get jk(�+ jti �

tj j)j � �e���e��jt �t j � �e���e�ji�jj�� . Hence
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Since, for jqj < 1; n

i=1
(n�i)qi � nq=(1�q), we obtain n

i=1
(n�

i)e��i� � n(�n), where (�) = e���=(1 � e���). As 0 <

(�) � 1=��, we find that the quantity is of order O(n=�n). More-
over, because jk(t)j � �

n
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k(�� jti � tj j)

�

n

i=1
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� �

n
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where IA(j) = 1 for j 2 A and IA(j) = 0, otherwise. As

n

j=1

Ifj;jt �t j��g(j) � the number of t0js in the interval

[ti � �; ti + �] �
2�

�n

+ 1

the quantity is also of order O(n=�n) which completes the proof.
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Robust Nonlinear Control Associating Robust Feedback
Linearization and Control

Ana Lù́cia D. Franco, Henri Bourlès, Edson R. De Pieri, and
Hervé Guillard

Abstract—In this note, a robust nonlinear controller for a nonlinear
system subject to model uncertainties is proposed. Such a controller
associates a “robust feedback linearization” with a robust linear
controller. The robust feedback linearization exactly transforms the
nonlinear system into a linear system equal to the linear approximation
of the original nonlinear system around a nominal operating point. The
robustness of the resulting overall nonlinear controller is proved by
theoretical arguments and illustrated through an application example, the
control of a magnetic bearing system.

Index Terms—Feedback linearization, magnetic bearing system, non-
linear coprime factorization, nonlinear systems, robust control.

I. INTRODUCTION

A common method for the control of nonlinear systems is to use
a linear controller calculated for the linear approximation of the non-
linear system around an operating point. This method is largely used
due to the fact that for linear systems the choice of control techniques
is wider and the design can be done in a more systematic way than in
the nonlinear case. Nevertheless, this kind of control works in general
only in a small neighborhood of the operating point, since this is the
region where the linear approximation is valid. Thus, when the system
is far from this point, the linear controller will generally not behave as
desired.

In this context, the feedback linearization seems to be interesting,
because in this case the nonlinear system is exactly transformed into a
linear system (which is valid for all the operating region) and only then
the linear controller is applied. Therefore, a controller associating feed-
back linearization and a linear controller will work in any point, not
only in a small neighborhood of the operating point. However, when
using the classical feedback linearization [1], the linearized system ob-
tained is in the Brunovsky form, a non-robust form whose dynamics is
completely different from that of the original system, and the resulting
closed-loop may be non robust in the presence of uncertainties.

A new form of feedback linearization, called robust feedback lin-
earization, was proposed in [2]. This method gives a linearizing control
law that transforms the nonlinear system into its linear approximation
around an operating point. Thus, it causes only a small transformation
in the natural behavior of the system, which is desired in order to obtain
robustness. Hence, this method combines the advantages of the afore-
mentioned methods and eliminates their drawbacks.

In this note, the robustness of the performance obtained with a robust
feedback linearization associated with a McFarlane–Glover H1 con-
troller [3], [4] is demonstrated theoretically and illustrated through an
application example (whereas in [2] only the robustness of the stability
was considered).
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The note is organized as follows. In Section II, the classical feedback
linearizing method is briefly reviewed and the robust one is explained.
In Section III, the dual case (normalized right coprime factorization)
of the McFarlane–Glover method for the design of an H1 controller
is presented. The robustness properties of the robust nonlinear con-
troller (which associates the robust feedback linearization with a
McFarlane–Glover H1 controller) are demonstrated in Section IV.
The theory is illustrated by the application of the three aforementioned
methods (linear control and classical and robust feedback lineariza-
tion) to a magnetic bearing system, in Section V, where the design of
the controllers is presented and simulation results are given.

A preliminary version of this note has been presented at an IEEE
conference [5].

II. FEEDBACK LINEARIZATION

Consider the nonlinear system with n states and m inputs described
by the state–space equation

_x = f(x) + g(x)u = f(x) +

m

i=1

gi(x)ui (1)

where x 2 n denotes the state, u 2 m is the control input, and
f(x); g1(x); . . . ; gm(x) are smooth vector fields defined on an open
subset of n. Suppose that this system satisfies the well-known con-
ditions for feedback linearization [1]: there exists a vector �(x) =
[ �1(x) � � � �m(x) ]T , formed by functions �i(x) with relative de-
gree ri such that r1+ � � �+ rm = n, and the decoupling matrix of this
system, given by

M(x) =

Lg L
r �1

f �1(x) � � � Lg L
r �1

f �1(x)

...
. . .

...
Lg L

r �1

f �m(x) � � � Lg Lr �1

f �m(x)

(2)

is invertible. The output of system (1) is chosen as y(x) = �(x).
The objective here is to linearize this system by feedback in a neigh-

borhood of an operating point x0 chosen, without loss of generality, as
x0 = 0. Two different forms of feedback linearization are presented
next. It is assumed that the state is available for control purposes.

A. Classical Feedback Linearization

The classical feedback linearization [1] is accomplished by using
a linearizing control law of the form uc(x; w) = �c(x) + �c(x)w,
where w is a linear control, and a diffeomorphism xc = �c(x),
with �c(x) = �M�1(x)[Lrf �1(x) � � � L

r
f �m(x) ]T ,

�c(x) = M�1(x), �Tc (x) = [�Tc (x) � � � �Tc (x) ], and
�Tc (x) = [�i(x) Lf�i(x) � � � L

r �1

f �i(x) ].
The linearized system is

_xc = Acxc +Bcw (3)

where Ac and Bc are the matrices of the Brunovsky canonical form
[1]. It is a well-known fact that the Brunovsky form is extremely vul-
nerable to uncertainties and that the matrix Ac is ill conditioned [6].
Furthermore, this system has infinite equilibrium points and no phys-
ical meaning (two different nonlinear systems with the same dimen-
sions will have the same Brunovsky form). For all these reasons, it is
difficult to obtain a robust controller when using the classical feedback
linearization.

B. Robust Feedback Linearization

The main difference between the robust feedback linearization [2]
and the classical one is that the linearized system has the form

_xr = Arxr +Brv (4)

with Ar = @xf(0) and Br = g(0), which corresponds to the linear
approximation of the nonlinear system (1). In this case, little transfor-
mation is performed on the original nonlinear system, which makes it
more probable that the properties of the linear design (including robust-
ness) still hold for the nonlinear closed-loop.

The robust feedback linearization is accomplished by using a lin-
earizing control law of the form u(x; v) = �(x) + �(x)v, where v
is a linear control, and a diffeomorphism xr = �(x), with �(x) =
�c(x) + �c(x)LT

�1�c(x), �(x) = �c(x)R
�1, �(x) = T�1�c(x),

L = �M(0)@x�c(0), T = @x�c(0), and R = M�1(0). The func-
tions �(x), �(x), and �(x) satisfy

@x�(0) = 0; �(0) = I; and @x�(0) = I: (5)

It is important to notice that applying the same linear control v to the
nonlinear system (1), i.e., using u = v, corresponds to the first method
discussed in the introduction (a linear control directly applied to the
nonlinear system). As mentioned before, such control works only in
a small neighborhood of the operating point x0 and will not provide
good results far from it.

III. H1 ROBUST STABILIZATION

In this section, the method used to calculate the linear controllers for
the linearized systems (3) and (4) is presented.

The linearH1 controllers are obtained using the McFarlane–Glover
method [3] with loop-shaping [4], i.e., applying the method of H1
robust stabilization to a system that has been previously “shaped” by
a precompensator W1 and/or a postcompensator W2 to obtain a better
performance. The McFarlane–Glover method [3], [4] deals with the
H1 robust stabilization problem of perturbed linear plants, given by a
normalized left coprime factorization. The case of a normalized right
coprime factorization (needed for the nonlinear analysis in Section IV)
is recalled below to clarify the theory in Section IV.

Lemma 1: Consider a strictly proper1 linear system, with transfer
matrix G(s), and the augmented system Gs(s) = W2(s)G(s)W1(s),
assumed to be controllable and observable, where W1(s) and W2(s)
are weighting matrices that “shape” the frequency response of G(s).
This augmented system has a normalized right coprime factorization
given by Gs(s) = Nr(s)M

�1

r (s) and a family of perturbed plants,
also controllable and observable, with transfer matrices

Gp(s) = (Nr(s) + �N (s))(Mr(s)+ �M (s))�1 (6)

where �M (s) and �N (s) are stable unknown transfer matrices
which represent the system uncertainty. A controller Ks(s) such that

kM�1

r (s)(I �Ks(s)Gs(s))
�1[Ks(s) I ]k1 �  (7)

1Only the strictly proper case is of interest in this note, since it deals with
systems whose output depends directly only on the state of the system, not on
its input.
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Fig. 1. Closed-loop system.

for a given  > min, guarantees that the closed-loop system is stable
for all uncertainties such that

�N (s)

�M (s)
1

<
1


: (8)

Such a controller is given by

Ks =
As � ZCT

s Cs + 2BsB
T
s XL�1 ZCT

s

2BT
s XL�1 0

(9)

with L = (1 � 2)I + ZX , where (As; Bs; Cs) is a minimal
state–space realization of Gs(s) and Z and X are the unique posi-
tive–definite solutions of the algebraic Riccati equations

AsZ + ZA
T
s � ZC

T
s CsZ +BsB

T
s = 0 (10)

A
T
s X +XAs �XBsB

T
s X + C

T
s Cs = 0: (11)

The controller for G(s) is given by K(s) = W1(s)Ks(s)W2(s).
Proof: The proof is obtained straightforwardly by “dualizing” the

one given in [3] for the case of a left coprime factorization.
Remark 1: As shown in [7, Cor. 18.8], Ks is also an H1 controller

for the normalized left coprime factorization of Gs(s), but its above
state space representation (9) is dual to the one usually obtained in the
latter case.

IV. ROBUST NONLINEAR CONTROL

In this section, it is proved that the robustness properties of the con-
troller obtained by the method of McFarlane–Glover for the linearized
system are kept when this controller is applied, together with the robust
feedback linearization, to the nonlinear system.

This demonstration uses the concept of “local W-stability,” which
allows the analysis of the local input-output stability of a nonlinear
system by the means of a local version of the Small Gain Theorem. In
what follows,Wn denotes the Sobolev space of functions x : ! n

which are absolutely continuous and such that x and _x belongs to L2.
This space is equipped with the norm kxkW = (kxk2 + k _xk2)

1=2,
where k � k2 is the L2-norm. (See [8] and [9] for more details.)

Definition 1[Local W-Stability]: Let beH : Wn ! Wm and

Kl = fk > 0;9� > 0 : kHukW � kkukW

whenever u 2W
nis such thatkukW < �g: (12)

If Kl is nonempty, then H is said to be locally W-stable and
W (H) = inf(Kl) is called the local W-gain of H. If Kl is empty,
we set W (H) = +1.

Fig. 2. Standard form for closed-loop system.

Property 1: LetH be a nonlinear system with state x, exponentially
stable equilibrium x0 = 0, and linear approximationH1 around x0 =
0. Assuming that H1 is detectable and stabilizable and has a transfer
matrix H , then the local W-gain of H around x0 = 0 is such that
W (H) = kHk1.

To begin with, consider the loop-shaping of the nonlinear system
P, given by _x = f(x) + g(x)u, y = x, by the nonlinear weighting
functions Wi, given by _xw = fw (xw ) + gw (xw )uw , yw =
hw (xw ) + lw (xw )uw , with fw (0) = hw (0) = 0, i = 1; 2.
Then, the augmented nonlinear system Ps is

_xw
_x

_xw

_x

=

fw (xw )

f(x) + g(x)hw (xw )

fw (xw ) + gw (xw )x

f (x )

+

gw (xw )

g(x)lw (xw )

0

g (x )

us

ys = hw (xw ) + lw (xw )x

h (x )

: (13)

Suppose that this system has a normalized right coprime factorization
[10] and that it is subject to uncertainties�N and�M as shown in
Fig. 1.

The perturbed nonlinear system has a normalized right coprime fac-
torization given by [10]

Nr : _xs = ~fs(xs) + gs(xs)q

ys = hs(xs) + pn (14)

M
�1
r : _xs = fs(xs) + gs(xs)(us � pm)

q = (us � pm)� ~hs(xs) (15)

with ~fs(xs) = fs(xs) � gs(xs)(gs(xs))
T (@x V (xs))

T and
~hs(xs) = �(gs(xs))

T (@x V (xs))
T where V (xs) is a smooth proper
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Fig. 3. Singular value plots of G , W G , and K G .

Fig. 4. Singular value plots of G , W G , and K G .

positive–definite solution of the Hamilton–Jacobi–Bellman (HJB)
equation

2(@x V )fs � (@x V )gsg
T

s (@x V )
T + h

T

s hs = 0: (16)

The nonlinear system Ps has a linear approximation with transfer
matrix

Gs =
As Bs

Cs Ds

=

Aw 0 0 Bw

BCw A 0 BDw

0 Bw Aw 0

0 Dw Cw 0

(17)

where As = @x fs(0), Bs = gs(0), Cs = @x hs(0), and Ds = 0,
that is, where A = @xf(0), B = g(0), Aw = @x fw (0), Bw =
gw (0), Cw = @x hw (0) and Dw = lw (0) for i = 1; 2.

Theorem 1: The linear controller Ks given by (9), combined with
the robust feedback linearization and applied to the nonlinear system

Ps (as shown in Fig. 1), ensures that the closed-loop is locally W-stable
for all nonlinear uncertainties�N and�M such that

W
�N

�M
<

1


: (18)

Proof: As seen in Section III, by using the McFarlane–Glover
method, it is possible to obtain, for the linearized system Gs, a con-
troller Ks that guarantees (7), where M�1

r (s) = I + BTs X(sI �

As)
�1Bs and X is the unique positive–definite solution of (11).

For the controllerKs, the nonlinear systemT (Fig. 2) with output q
and inputs pm and pn is given by

_xs = fs(xs) + gs(xs)(us � pm)

q = (us � pm)� ~hs(xs) (19)

with us = �� (xs; pn)+�� (xs; pn)v and v = Ks ��� (xs; pn),
where  (xs; pn) = hs(xs) + pn and  (0; 0) = 0.
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Fig. 5. Rotor position x for the linear control.

Linearizing this system around the origin, (xs = us = pm = pn =
0), using the results in (5) and applying the chain rule to the composed
functions, yields

_xs = Asxs +Bs(us � pm)

q = (us � pm)�B
T

s
~Xxs (20)

with us = v and v = Ks(Csxs + pn), where ~X is the unique posi-
tive definite solution of the HJB equation associated with the linearized
system, i.e.,

x
T

s (A
T

s
~X + ~XAs � ~XBsB

T

s
~X + C

T

s Cs)xs = 0 (21)

which is equivalent to the Riccati equation (11). By uniqueness of this
solution, ~X = X .

After some algebraic manipulations, and using the Laplace trans-
form, the transfer matrix of the linearized system is obtained as

T (s) =M
�1

r (s)(I �Ks(s)Gs(s))
�1[Ks(s) I ]: (22)

From (7), it is known that kT (s)k
1
� . Therefore, by Property 1,

W (T) = kT (s)k1 � .
Considering the closed-loop standard form in Fig. 2, the local ver-

sion of the Small Gain Theorem [8], [9] implies that this closed-loop
is locally W-stable if

W
�N

�M
W (T) < 1 (23)

that is, the closed-loop system is locally W-stable for all uncertainties
�N and �M such that

W
�N

�M
<

1


: (24)

Furthermore, it is possible to see from (5), that the controller for P is
K = W1KsW2.

Remark 2: The statement of the above theorem is not valid with the
classical feedback linearization (because (22) is no longer true). Thus,
there is no guarantee that the robustness obtained by a controllerK for
the linearized system in Brunovsky form is kept when this controller is
applied, together with the classical feedback linearization, to the non-
linear system. In the case of the linear control directly applied to the
nonlinear system, the robustness is kept only if the system state re-
mains in a sufficiently small neighborhood of the operating point, thus
this method is more limited than the linear control with robust feedback
linearization.

These results are illustrated through an application example in the
next section.

V. APPLICATION TO A MAGNETIC BEARING SYSTEM

Consider the magnetic bearing system described in [11]. Defining
x1 as the rotor position, x2 as the rotor velocity, x3 and x4 as the cur-
rents, u as a vector of the input voltages u1 and u2, this system may be
modelled in the state–space form

_x =

x2
L

m

(x +I )

(k�2x )
� (x +I )

(k+2x )

�R (k�2x )x
L

� 2x (x +I )
k�2x

�R (k+2x )x
L

+ 2x (x +I )
k+2x

+

0 0

0 0
k�2x
L

0

0 k+2x
L

u (25)

where m is the rotor mass, I0 is the premagnetization current, R1 and
R2 are the resistances of the circuits andL0 and k are positive constants
depending on the system construction. The only equilibrium point is
x0 = 0. The nominal values of the system parameters are m = 2 kg,
k = 2:0125 � 10�3 m, L0 = 3 � 10�4 Hm, R1 = 1
, R2 = 1
,
and I0 = 6 � 10�2 A.

A. Controller Design

The conditions for the feedback linearization to be possible are sat-
isfied, therefore, the nonlinear system (25) is linearized by feedback
around its equilibrium point x0 = 0. The output is chosen as y(x) =
�(x) = [ x1 x3 ]

T . Two different controllers are designed: The first
one associates the classical feedback linearization with a linear H1
controller, and the second one associates the robust feedback lineariza-
tion with a linear H1 controller.
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Fig. 6. Rotor position x for the classical feedback linearization.

1) Feedback Linearization: The linearization of the nonlinear
model (25) is done by using both the classical feedback linearization
and the robust feedback linearization.

The functions for the classical linearizing feedback control law are

�c(x) =
R1x3 +

2L x (x +I )

(k�2x )

R2x4 +
2x L (k+2x )(x +I )

(k�2x ) (x +I )

(26)

�c(x) =
0 L

k�2x
�m(k+2x )
2(x +I )

L (k+2x )(x +I )

(k�2x ) (x +I )

(27)

�c(x) =

x1

x2
L

m

(x +I )

(k�2x )
�

(x +I )

(k+2x )

x3

: (28)

The classically linearized system (in the Brunovsky form) is then

_xc =

0 1 0 0

0 0 1 0

0 0 0 0

0 0 0 0

A

xc +

0 0

0 0

1 0

0 1

B

w (29)

with transfer matrix Gc(s) = (sI � Ac)
�1Bc and linear control law

w = Kcxc.
The functions for the robust linearizing feedback control law are

�(x); �(x), and �(x) calculated using the functions �c(x); �c(x), and
�c(x) given before and the matrices

L =
0 0 �

2I R

mk

2I R

mk

0 �

2I
k

�

kR

L
0

(30)

T =

1 0 0 0

0 1 0 0
8L I

mk
0 2L I

mk
�

2L I

mk

0 0 1 0

(31)

R =
0 L

k

�

mk

2I
L

k

: (32)

The robustly linearized system is then

_xr =

0 1 0 0
8L I

mk
0 2L I

mk
�

2L I

mk

0 �

2I
k

�

kR

L
0

0 2I
k

0 �

kR

L

A

xr

+

0 0

0 0
k

L
0

0 k

L

B

v (33)

with transfer matrix Gr(s) = (sI � Ar)
�1Br and linear control law

v = Krxr .
2) Linear H1 Controller Design: The controllers Kr and Kc

are designed using the McFarlane–Glover method with loop-shaping.
Since the systems Gr and Gc are different, two different, but “equiv-
alent,” weighting matrices Wr and Wc are chosen such that the
frequency response of KrGr (respectively, WrGr) is similar to the
one of KcGc (respectively, WcGc) and that the nominal performances
for the two closed-loop systems are alike.

The loop-shaping Gsr = WrGr is done with the weighting matrix
Wr chosen as

Wr = diag
200(s+ 25)

s
; 115; 25; 25 : (34)

The singular value plots of Gr and WrGr are shown in Fig. 3. The
weighting matrix Wr adds an integrator to the first row of the transfer
matrix Gsr , which is related to the rotor position x1, to avoid steady-
state errors, and a zero to better shape the position response. To the
other lines of the transfer matrix Gsr , related to the velocity x2 and
the currents x3 and x4, only gains are added. The value r = 4:9 is
used to calculate the controller Ksr for the augmented system Gsr .
This gives a robustness index of 20%. The controller Kr is given by
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Fig. 7. Rotor position x for the robust feedback linearization.

Kr = KsrWr , where Ksr is obtained from (9). The singular value
plot of KrGr is also shown in Fig. 3.

Then, it is possible to perform a loop-shapingGsc =WcGc similar
to Gsr by choosing Wc as

Wc =

9000(s+2:5)
s

0 0
180(s+2:5)

s

0 2200 0 300

0 0 125 2

0 0 2 125

: (35)

In Fig. 4, the singular value plots of Gc and WcGc are shown. As in
the “robust case,” the weighting matrix Wc adds an integrator to the
first row of Gsc, to avoid steady-state errors (it is necessary to include
an integrator because the integrators in Gc are not “real” in the phys-
ical system—they come from the Brunovsky form—and, in the case
of parameter variations, they may disappear). The zeros and the gains
are added to obtain for WcGc a “shape” similar to that of WrGr for
medium and high frequencies (>15 rad/s). For low frequencies, it is not
possible to obtain the same “shape,” because this would imply adding
slow poles to Wr or cancelling the poles at the origin of Gc and both
solutions would result in bad performances for the closed-loop. The
next step is to calculate the controller Ksc for the augmented system
Gsc using (9). For this, the value c = 4:9 is used, which gives a ro-
bustness index of 20%. The controller Kc is given by Kc = KscWc.
The singular value plot of KcGc is also shown in Fig. 4.

Hence, the two controllers provide similar “loop-shapes,” similar
nominal performances and the same values of c and r , thus the same
robustness indexes with respect to Gc and Gr .

B. Simulation With Parameter Variations

In this subsection, a comparison of the robustness obtained for the
nonlinear system with the three proposed controllers (Kc and Kr as-
sociated with the classical linearization and with the robust lineariza-
tion, respectively, and Kr directly applied to the nonlinear system) is
presented.

The simulations are carried out with Simulink/Matlab, using the
Dormand–Prince algorithm with a maximal step size of 0.1 ms. For

these simulations, it is supposed that the parameter variations may be
�15% for m, L0, R1 and R2 and �5% for k, yielding 32 different
combinations of the extreme values (which are all tested). The initial
condition for the position x1 is 0.55 mm, which allows evaluation of
the behavior of the controllers far from the equilibrium point. The
results for the linear control (directly applied to the nonlinear system)
are given in Fig. 5, for the classical feedback linearization in Fig. 6
and for the robust feedback linearization in Fig. 7.

These results show that with all the considered parameter variations
the closed-loop system controlled by Kr associated with the robust
feedback linearization behaves as desired, since the performance re-
mains close to the nominal one. For the case where only Kr is used
(without feedback linearization) the closed-loop system presents good
performances for some combinations of the parameters, but is unstable
or has big overshoots for some others. The closed-loop system con-
trolled by Kc associated with the classical feedback linearization is
unstable for some combinations of parameters and presents poor per-
formances for the other ones.

VI. CONCLUDING REMARKS

As shown by the theory in Section IV and illustrated by the
simulations in Section V-B, a robust nonlinear controller for the non-
linear system is obtained by using the robust feedback linearization
associated with a McFarlane–Glover H1 controller. This does not
hold when the classical feedback linearization is used or when a linear
control is directly applied to the nonlinear system, as explained in
Remark 2. In addition, the choice of the weighting matrix for the
loop-shaping is much easier when using the robust linearization, as
shown in Section V-A.
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Synchronization and Convergence of Linear Dynamics in
Random Directed Networks

Chai Wah Wu

Abstract—Recently, methods in stochastic control are used to study the
synchronization properties of a nonautonomous discrete-time linear system
( + 1) = ( ) ( ) where the matrices ( ) are derived from

a random graph process. The purpose of this note is to extend this anal-
ysis to directed graphs and more general random graph processes. Rather
than using Lyapunov type methods, we use results from the theory of in-
homogeneous Markov chains in our analysis. These results have been used
successfully in deterministic consensus problems and we show that they
are useful for these problems as well. Sufficient conditions are derived that
depend on the types of graphs that have nonvanishing probabilities. For
instance, if a scrambling graph occurs with nonzero probability, then the
system synchronizes.

Index Terms—Directed graphs, dynamics, graph theory, Markov pro-
cesses, synchronization.

I. INTRODUCTION

Synchronizing dynamics among coupled nonlinear systems where
the coupling topology is expressed as a graph is an active area of re-
search [1]–[9]. In recent years, in the context of agreement and con-
sensus problems, there is increased interest to study the case where the
dynamics are linear [10]–[12]. Some of the applications include mod-
eling the flocking of animals, communications in mobile autonomous
robots and multivehicle control. In these studies the dynamical system
is deterministic. In [13], a discrete-time nonautonomous linear system
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x(k + 1) = G(k)x(k) is studied where the matrices G(k) are de-
rived from a random graph process. It was found that x(k) converges
to the subspace spanned by (1; . . . ; 1)T in probability if each edge is
chosen with the same probability. The purpose of this note is to extend
this to directed graphs and more general random graph models. In con-
trast to [13] where Lyapunov methods from stochastic control are used,
we use results from the theory of inhomogeneous Markov chains. This
approach allows us to easily obtain results for general random graph
models.

II. PROBLEM FORMULATION

We consider the following nonautonomous discrete-time linear dy-
namical system:

x(k + 1) = (G(k)
D(k))x(k) + 1
 v(k) (1)

where x =

x1
...
xn

; xi 2
m; v(k) 2 m, and 1 = (1; . . . ; 1)T .

The matrix G 
 D is the Kronecker product or tensor product of the
matricesG andD. We assume thatG(k) is an n by n stochastic matrix
(i.e., G(k) is a nonnegative matrix whose rows sum to 1). Most prior
papers have studied the cases whereD(k) does not depend on k and is a
scalar or the identity matrix. We say that the system in (1) synchronizes
if kxi(k)� xj(k)k ! 0 as k ! 1 for all i; j. If there exists " < 1
such that kD(k)k � " for all k and G(k) are symmetric stochastic
matrices, then kG
Dk � " and synchronization occurs regardless of
G. On the other hand, if kD(k)k > 1 for all k, then x(k) can diverge.
In this note, we will assume that kD(k)k � 1 for each k. First, we
show that the maximum distance between the xi’s is nonincreasing.

Theorem 2.1: Let �(k) = maxi;j kxi(k) � xj(k)k. Then, �(k +
1) � �(k).

Proof: Let S(k) = fx1(k); . . . ; xn(k)g and T (k) =
fD(k)x1(k) + v(k); . . . ; D(k)xn(k) + v(k)g. Note that �(k)
is the diameter of the convex hull of S(k). Since xi(k+1) is a convex
combination of elements of T (k), it is in the convex hull of T (k).
Thus means that the convex hull of S(k + 1) is a subset of the convex
hull of T (k). Since kD(k)k � 1, the diameter of the convex hull of
T (k) is less than or equal to the diameter of the convex hull of S(k)
and, thus, �(k + 1) � �(k).

Note that synchronization is equivalent to limk!1 �(k) = 0.

III. SCRAMBLING STOCHASTIC MATRICES AND HAJNAL’S INEQUALITY

We next summarize some results from the theory of inhomogeneous
Markov chains which are useful in deriving sufficient conditions for
synchronization. These results were first used in consensus problems
by [10] and its use subsequently extended in [12], [14], and [15].

Definition 3.1: A matrix A is scrambling if for each pair of indexes
(i; j) there exists k such that Aik and Ajk are both nonzero.

Definition 3.2: For a real matrix A, the ergodicity coefficient �(A)
is defined as

�(A) = min
j;k

i

min(Aji; Aki):

For nonnegative matrices whose row sums is less than or equal to
r, it is clear that 0 � �(A) � r with �(A) > 0 if and only if A is
scrambling.
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