LA RÉGULATION DE POURSUITE OPTIMALE QUADRATIQUE MULTIVARIABLE DES SYSTÈMES LINÉAIRES PERTURBÉS (*)

par H. BOURLÉS ('), O. L. MERCIER (')

présenté par P. BERNARD

Résumé. — Donc cet article est traité le problème de poursuite optimale quadratique d'un objectif constant pour un système linéaire invariant sujet à des perturbations extérieures constantes inconnues. Les conditions les plus générales portant sur les matrices du système et de l'indice de performance pour que le problème admette une solution, sont indiquées. Il est montré qu'il suffit de connaître les espoirances mathématiques des perturbations extérieures pour pouvoir minimiser l'espérance mathématique de l'indice. L'expression de la commande de poursuite optimale est donnée.

Abstract. — Considering a linear time-invariant system subjected to unknown constant external disturbances, this paper addresses the problem of its quadratic-cost optimal tracking to a constant reference vector. The most general conditions pertaining to the system and the performance index matrices are given for the problem to admit a solution. It is shown that knowledge of the disturbances expectations is sufficient to minimize the expected cost. The expression of the optimal tracking law is given.

I. INTRODUCTION

On connaît l'importance des problèmes de poursuite en Automatique. Il s'agit de la régulation à une valeur « objectif » spécifiée z_a, de la sortie $z(t)$ d'un processus dynamique.

Lorsque le système (supposé linéaire et invariant) est affecté par des perturbations constantes et inconnues, à effet additif sur les équations d'état et de sortie, il est bien connu que l'un d'obtenir une régulation sans erreur de la sortie $z(t)$ à sa valeur spécifiée z_a, il convient d'utiliser une commande à effet proportionnel sur l'état et intégral sur l'erreur de poursuite $e(t) = z(t) - z_a$.

Il existe différentes manières [2, 3] de formuler un problème d'optimisation pour qu'une telle commande soit, de plus, optimale pour un indice de perfor-

(*) Reçu en septembre 1981.
(') Office National d'Études et Recherches Aérospatiales (O.N.E.R.A.), Châtillon, France.
© Bordas-Dunod
RÉGULATION DE POURSUITE OPTIMALE QUADRATIQUE

Où \(x(t) \in \mathbb{R}^n \), \(u(t) \in \mathbb{R}^m \) (\(m \leq n \)), \(z(t) \in \mathbb{R}^p \), \(\delta_1 \in \mathbb{R}^s \), \(\delta_2 \in \mathbb{R}^r \), pour \(t \in [0, +\infty[\). L’état \(x \) est supposé à chaque instant disponible pour le calcul de la commande ; \(z(t) \) est la sortie du système ; \(\delta_1 \) et \(\delta_2 \) sont des perturbations extérieures inconnues, qui sont supposées avoir des espérances mathématiques connues \(\bar{\delta}_1 \) et \(\bar{\delta}_2 \) et des moments d’ordre \(2 \) finis. L’application linéaire \(b \) est supposée injective (c’est-à-dire que la commande n’est pas redondante).

Le problème considéré ici consiste à déterminer une loi de commande \(\tilde{u}^*(\cdot) \) assurant la régulation asymptotique à zéro de l’erreur de poursuite

\[
e(t) \triangleq z(t) - z_d \tag{2}
\]

(où \(z_d \in \mathbb{R}^p \) est l’objectif de la poursuite), tout en minimisant l’espérance mathématique d’un indice de performance quadratique donné.

III. CHOIX DE L’INDICE DE PERFORMANCE

III.1. Structure de l’indice

La méthode pour réaliser une régulation robuste en présence de perturbations extérieures lorsque celles-ci vérifient des équations différentielles à coefficients constants et connus, est maintenant classique : elle consiste à utiliser une commande incorporant un « modèle interne » de ces perturbations [4]. Ceci est réalisé grâce à une augmentation d’état particulière. Dans le cas de perturbations constantes, on obtient alors une commande « proportionnelle et intégrale » telle que celle mentionnée dans l’introduction. Une manière de mettre en œuvre cette commande consiste à définir les nouvelles variables [3]

\[
X \triangleq (J^T \, e)^T \tag{3}
\]

et à déterminer \(U \) de façon à annuler asymptotiquement \(e(t) \); la commande \(u \) se déduit alors de \(U \) par intégration.

En effet, d’après (1), on a

\[
\dot{X}(t) = FX(t) + GU(t) \tag{4}
\]

où

\[
F \triangleq \begin{pmatrix} \ddot{A} & 0 \\ C & 0 \end{pmatrix}, \quad G \triangleq \begin{pmatrix} \tilde{B} \\ 0 \end{pmatrix} \quad \text{et} \quad H \triangleq \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix} .
\]

(*) Une base convenable \(\theta \) de \(\mathbb{R}^n \) est ici considérée pour la définition de \(X \) : elle est composée de couples \((\rho_i, 0)\) et \((0, \nu_i)\) où les \(\rho_i \) et les \(\nu_i \) forment respectivement une base de \(\mathbb{R}^n \) et de \(\mathbb{R}^p \). D’autre part, dans tout ce qui suit, une base de \(\mathbb{R}^p \) est fixée.
Par choix d’un retour d’état \(U = KH \), on peut donc annuler asymptotiquement \(e(t) \) si, et seulement si [4, Théorème 4.4] :
\[
\mathcal{X}(F) = \langle F, \text{Im } G \rangle + \mathcal{V}^*
\]

où \(\mathcal{X}(F) \) est le sous-espace engendré par les modes instables de \(F \) et où \(\mathcal{V}^* \) est le plus grand sous-espace \((F,G) \)-invariant inclus dans le noyau de \(H \).

Considérons à présent l’indice de performance :
\[
J = \int_0^{+\infty} (X(t)^T Q X(t) + U(t)^T R U(t)) dt, \quad Q \geq 0, R > 0.
\]

Il est toujours possible de choisir \(Q \geq 0 \) de manière qu’il existe une valeur unique \(U^*(.) \) de \(U = \tilde{u} \) pour laquelle \(J \) est minimum sous la contrainte dynamique (4). Lorsque les matrices \(F, G \) et \(H \) vérifient certaines conditions algébriques, il est possible de choisir \(Q \geq 0 \) de façon que, de surcroît, pour \(U(.) = U^*(.) \), \(e(t) \) tende vers zéro quand \(t \) tend vers l’infini.

Dans la section IV, il est montré qu’il existe alors (compte tenu des hypothèses formulées dans la section II et moyennant toutefois une condition supplémentaire) une commande unique \(\tilde{u}(.) \) minimisant \(E[J] \) sous la contrainte dynamique (1). De plus, cette commande annule asymptotiquement l’erreur de poursuite \(e(t) \).

Il importe tout d’abord d’expliciter les conditions algébriques mentionnées ci-dessus, ainsi que le choix à effectuer pour la matrice de pondération \(Q \).

III.2. Condition d’existence d’une commande de poursuite optimale et choix de \(Q \)

Soit \(L \triangleq Q^{1/2} \).

Dans le cas où la paire \((F, G)\) est stabilisable, c’est-à-dire, d’après [5], où \((A, B)\) est stabilisable et où rang \(\begin{bmatrix} A & B \\ C & 0 \end{bmatrix} = n + p\), on fait tendre \(X(t)\) vers zéro pour \(U(.) = U^*(.)\) en choisissant \(L\) de telle sorte que \((L, F)\) soit observable. L’erreur de poursuite \(e(t)\) tend alors elle-même vers zéro.

Toutefois, les conditions ci-dessus ne sont pas nécessaires — dans le cas général — pour qu’on obtienne, en minimisant \(J\) par rapport à \(U\), un \(U^*(.)\) annulant asymptotiquement \(e(t)\).

a) Choix de \(Q\) pour que \(J\) puisse être minimisé par rapport à \(U\)

Soit \(L \triangleq Q^{1/2} \) donnée, \(\mathcal{N}_L \) le sous-espace non observable de la paire \((L, F)\),

\[
\pi_L, \text{ la projection canonique de } \mathbb{R}^{n+p} \text{ sur } \mathbb{R}^{n+p}/\mathcal{N}_L, \text{ et } L_L, F_L, G_L \text{ les applications linéaires définies de manière unique par}
\]

\[
L_L \pi_L = L, \quad F_L \pi_L = F, \quad \text{et } G_L = \pi_L G
\]

\(F_L\) est donc l’application linéaire induite par \(F\) sur \(\mathbb{R}^{n+p}/\mathcal{N}_L\).

Soit en outre \(\Omega_L\) un sous-espace supplémentaire de \(\mathcal{N}_L\) par rapport à \(\mathbb{R}^{n+p}, \mathcal{A}_L = \{\omega_1, \ldots, \omega_q\}\) une base de \(\Omega_L\) et \(\mathcal{B}_L\) une base de \(\mathcal{N}_L\). Soit enfin \(\{\omega_1, \ldots, \omega_q\}\) la base choisie pour \(\mathbb{R}^{n+p}/\mathcal{N}_L\), où \(\omega_i\) est la classe d’équivalence de \(\omega_i\) modulo \(\mathcal{N}_L\). Moyennant l’identification entre applications linéaires et matrices correspondantes dans des bases données, on peut écrire, en prenant \(\mathcal{B}_A \cup \mathcal{A}_L\) comme base de \(\mathbb{R}^{n+p}\):

\[
L = \begin{pmatrix} L_L & 0 \\ L_L & L_L \end{pmatrix}, \quad F = \begin{pmatrix} F_L & 0 \\ F_L & F_L \end{pmatrix}, \quad G = \begin{pmatrix} G_L \\ G_L \end{pmatrix}
\]

Dans cette décomposition, la paire \((L_L, F_L)\) est observable [4]. Soit \(X_L\) la projection de \(X\) sur \(\Omega_L\) parallèlement à \(\mathcal{N}_L\). \(X_L\) vérifie l’équation différentielle

\[
\dot{X}_L(t) = F_L X_L(t) + G_L U(t).
\]

D’autre part, \(J\) s’exprime uniquement en fonction de \(X_L(t)\) et \(U\) selon

\[
J = \int_0^{+\infty} (X_L(t)^T L_L^T L_L X_L(t) + U^T(t) R U(t)) dt.
\]

Il existe ainsi [6] une valeur unique \(U^*(.)\) de \(U(.)\) pour laquelle \(J\) est minimum, si, et seulement si

\[
(F_L, G_L) \text{ est stabilisable}.
\]

La valeur optimale de \(U(.)\) est alors donnée par

\[
\forall t \in [0, +\infty[, \quad U^*(t) = K_L X_L(t)
\]

où

\[
K_L = - R^{-1} G_L^T P_L.
\]

\(P_L\) étant l’unique solution définie positive de l’équation algébrique de Riccati

\[
F_L^T P_L + P_L F_L - P_L G_L R^{-1} G_L^T P_L + L_L^T L_L = 0.
\]

Bien entendu, pour \(U(.) = U^*(.)\) défini en (8), \(X_L(t)\) tend asymptotiquement vers zéro.
b) Condition supplémentaire pour que \(w(t) \) tende vers zéro

Pour que \(U^*(t) \) annule asymptotiquement \(e(t) \) (et pour qu'on en soit assuré), il convient d'avoir de plus

\[
\text{Ker } L \subseteq \text{Ker } H. \quad (11)
\]

(En effet, si (11) est vérifié, lorsque \(LX(t) = 0 \), on a \(w(t) = HX(t) = 0 \); or,
\(LX = L_X X_L \), avec \(X_L(t) \) tendant vers zéro d’après le paragraphe précédent.)

Finalement, il convient donc de choisir \(L = Q(1/2) \) de telle façon que les conditions (7) et (11) soient toutes deux vérifiées. Un tel choix n'est pas possible pour des matrices \(F, G \) et \(H \) quelconques. La condition que doivent vérifier ces matrices est maintenant indiquée.

c) Condition nécessaire et suffisante portant sur \(F, G \) et \(H \)

Soit \(\mathcal{N}_H \) le sous-espace non observable de la paire \((H, F)\), et supposons que la condition (11) soit vérifiée. Il vient donc

\[
\mathcal{N}_L = \mathcal{N}_H. \quad (12)
\]

Soit en outre \(\pi_H \) la projection canonique de \(\mathbb{R}^{n+r} \) sur \(\mathbb{R}^{n+r}/\mathcal{N}_H \), et \(F_H \) et \(G_H \) les applications linéaires définies (de façon similaire à \(F_L \) et \(G_L \)) par

\[
F_H \pi_H = \pi_H F \quad \text{et} \quad G_H = \pi_H G.
\]

On montre que d’après (12), il existe une application linéaire surjective
\(\pi_{L/H} \) de \(\mathbb{R}^{n+r}/\mathcal{N}_H \) dans \(\mathbb{R}^{n+r}/\mathcal{N}_L \) telle que \(\pi_{L/H} \pi_H = \pi_H \) et telle que, de plus,
\(F_H \pi_{L/H} = \pi_{L/H} F_L \) [4, exercice 0.8]. Ceci entraîne notamment que

\[
\sigma^*(F_H) = \sigma^*(F_L).
\]

Supposons maintenant que la condition (7) soit également vérifiée. Elle équivalent, d’après [7], à

\[
\forall \lambda \in \sigma^*(F_L), \quad \Im(F_L - \lambda I) + \Im G_L = \mathbb{R}^{n+r}/\mathcal{N}_L.
\]

En projetant par \(\pi_{L/H} \) sur \(\mathbb{R}^{n+r}/\mathcal{N}_H \), il vient donc

\[
\forall \lambda \in \sigma^*(F_H), \quad \Im(F_H - \lambda I) + \Im G_H = \mathbb{R}^{n+r}/\mathcal{N}_H
\]

e et il s'ensuit (d'après [7]) que

\[
(F_H, G_H) \text{ est stabilisable.} \quad (13)
\]

Bien entendu, cette condition est suffisante pour que les conditions (7) et (11) puissent être toutes deux vérifiées, puisqu'alors le choix \(L = H \) convient.

La condition (13) est donc la condition nécessaire et suffisante cherchée.

IV. Calcul de la commande de poursuite optimale

IV.1. Forme de la commande

Soit \(\bar{u}(\cdot) \), la commande fonction du temps, dérivable sur \([0, +\infty[\), dont la dérivée \(\bar{u}(t) \) est égale (à chaque instant) à \(U^*(t) \) défini en (8), et qui prend la valeur initiale \(\bar{u}(0) = u_0 \in \mathbb{R}^n \). On a donc

\[
\bar{u}(t) = \frac{d\bar{u}}{dt}(t) = KX(t),
\]

où \(K \) est défini dans la base \(\mathcal{B}_0 \cup \mathcal{B}_s \) (*) par

\[
K = (K_L 0), \quad K \in \mathbb{R}^{n+m+n}.
\]

Soit, dans la base \(\mathcal{B}_0 \) de \(\mathbb{R}^{n+p} \),

\[
K = (K_1 K_2), \quad K_1 \in \mathbb{R}^{n+n}, \quad K_2 \in \mathbb{R}^{m+p}.
\]

Il vient alors d’après (3)

\[
\bar{u}(t) = K_1 \tilde{x}(t) + K_2 e(t)
\]

et l’on a par conséquent pour la loi de commande la forme proportionnelle et intégrale annoncée :

\[
\tilde{u}(t) = u_0 + K_1(x(t) - x_0) + K_2 \int_0^t e(t) \, dt. \quad (14)
\]

IV.2. Optimisation de la valeur initiale de la commande

D’après (5), (6), (8-10), pour \(U_1(.) = U^*(.) \) (lorsque la condition (7) est vérifiée), \(J \) prend sa valeur minimale par rapport à \(U \) [6] :

\[
\bar{J} = \min_U J = X^T(0) P_L X_L(0), \quad (15)
\]

soit encore

\[
\bar{J} = X^T(0) P X(0) \quad (16)
\]

où

\[
P = \begin{pmatrix} P_L & 0 \\ 0 & 0 \end{pmatrix} \quad \text{(dans la base } \mathcal{B}_0 \cup \mathcal{B}_s).\]

(*) On, sous-entendu, dans la base de \(\mathbb{R}^n \) fixée depuis le début de la section III.

vol. 16, n° 4, 1982
Soit $Y_0 \triangleq (x_0^T, z_0^T)^T$ et $\delta \triangleq (\delta_1^T \delta_2^T)^T$ (dans la base B_0). Par définition de $\hat{u}(\cdot)$, pour $u(\cdot) = \hat{u}(\cdot)$, l'indice de performance J prend la valeur \bar{J} qui se développe selon

$$\bar{J} = \delta^T \delta + u_0^T N \delta + u_0^T M Y_0 + Y_0^T S Y_0 + Y_0^T V \delta + u_0^T W u_0$$

où N, M, S et V sont des matrices de dimensions convenables et W est une matrice symétrique réelle semi-définie positive de $\mathbb{R}^{n \times n}$. Cette matrice est définie positive si

$$N_e \cap \text{Im } G = \{0\}, \quad (18)$$

ce qui est supposé dans ce qui suit (car cette condition n'est guère restrictive car tout état appartenant à $\text{Im } G$ est commandable et peut donc être pénalisé dans l'indice de performance (*); bien entendu, cette condition est toujours vérifiée dans le cas « classique » où la paire (L, F) est observable). Toutes les assertions qui viennent d'êtres formulées sont démontrées en annexe.

La quantité \bar{J} est une fonction de u_0, Y_0 et δ. Parmi ces variables (indépendantes du temps), seule la commande initiale peut être librement choisie. Supposons provisoirement δ connu. Alors, on peut prendre pour u_0, la valeur u_0^* qui minimise \bar{J}. Elle s'obtient par résolution de l'équation

$$\delta^T \delta + u_0^T M Y_0 + 2 W u_0 = 0.$$}

soit

$$u_0^* = -\frac{1}{2} W^{-1}(N \delta + M Y_0).$$

Il est aisè de vérifier que

$$\forall u_0, \quad J(u) - J(u_0^*) = (u_0 - u_0^*)^T W (u_0 - u_0^*) \geq 0,$$

ce qui entraîne que u_0^* est l'un seule valeur pour laquelle \bar{J} est minimum.

Si maintenant on revient à l'hypothèse que δ est inconnu, cette valeur u_0^* est elle-même inconnue. Prenons alors l'espérance mathématique de J. II vient d'après (17), pour une valeur quelconque de u_0 :

$$E[J] = E[\delta^T \delta] + u_0^* N \delta + u_0^T M Y_0 + Y_0^T S Y_0 + Y_0^T V \delta + u_0^T W u_0.$$ \hspace{1cm} (19)

(*) On peut montrer en outre que si, pour L donné, la condition (18) n'était pas vérifiée, G_L ne serait pas injective (voir annexe) et la commande serait donc redondante (au moins pour la stabilisation de $\mathbb{R}^{n \times n} G_L$). Dans ce cas, on pourrait éliminer les composantes superflues de la commande, c'est-à-dire réduire celle-ci à sa projection canonique sur l'espace quotient $\mathbb{R}^{n \times n} \cap \mathbb{R}^{n \times n} G_L$. Ce procédé permet de s'affranchir de la condition (18).

R.A.I.R.O. Automatique/Systems Analysis and Control

ou

$$\delta \triangleq (\delta_1^T \delta_2^T)^T.$$
Finalement, quelle que soit la fonction dérivable \(u(.)\),
\[
\tilde{J}^* \leq E[J].
\]

D'autre part, étant donnée l'unicité de \(U^* = \tilde{u}^*\) et de \(\tilde{u}_0^*\), la commande \(\tilde{u}^*(.)\) optimale par rapport à \(E[J]\) est unique.

L'ensemble des résultats obtenus est maintenant résumé dans le théorème suivant:

Théorème: Supposons que les matrices \(F, G, C, H\) vérifient les conditions nécessaires et suffisantes (13) et que la matrice \(L \triangleq Q^{-1/2}\) soit telle que les conditions (7), (11) et (18) soient vérifiées. Il existe alors une commande unique \(u^*(.)\) minimisant \(E[J]\). Cette commande est donnée par (14) ou \(u_0\) est remplacé par \(\tilde{u}_0\) vérifiant (22), et elle constitue une commande de poursuite optimale.

Remarque 1 : Principe de séparation

La commande \(\tilde{u}(.)\) définie plus haut étant appliquée au système, pour une valeur imposée de \(x_0\), et de \(z_0\) l'état \(x\) est une fonction du temps \(t\) de la perturbation \(\delta\) et de \(u_0\) (valeur initiale de \(\tilde{u}(.)\)). En effet, cet état \(x(t; \delta, u_0)\) est solution du système
\[
\frac{\partial x}{\partial t}(t; \delta, u_0) = Ax(t; \delta, u_0) + Bu(t; \delta, u_0) + \delta_1,
\]
\[
x(0; \delta, u_0) = x_0,
\]

où \(\tilde{u}(t; \delta, u_0)\) est défini selon
\[
\tilde{u}(t; \delta, u_0) = u_0 + K_1(x(t; \delta, u_0) - x_0) + K_2 \int_0^t [Cz(t; \delta, u_0) - z_0 + \delta_2] dt.
\]

Ce système intégro-differential admet bien une solution unique car il équivaut au système différentiel linéaire non homogène
\[
\frac{\partial x}{\partial t}(t; \delta, u_0) = (A + BK_1)x(t; \delta, u_0) + BK_2 \tilde{u}(t; \delta, u_0) + Bu_0 - K_1 x_0 + \delta_1,
\]
\[
\frac{\partial z}{\partial t}(t; \delta, u_0) = Cx(t; \delta, u_0) - z_0 + \delta_2,
\]
avec
\[
x(0; \delta, u_0) = x_0 \text{ et } z(0; \delta, u_0) = 0.
\]

R.A.I.R.O. Automatique/Systems Analysis and Control

D'autre part, la manière dont \(\delta\) et \(u_0\) interviennent dans ce système entraîne que \(\tilde{x}(t; \delta, u_0)\) et \(\tilde{z}(t; \delta, u_0)\) sont des fonctions affines de \(u_0\) et de \(\delta\). D'après (23), \(\tilde{u}(t; \delta, u_0)\) est donc également une fonction affine de \(u_0\) et de \(\delta\). Par conséquent, si l'on prend l'espérance mathématique de cette quantité, il vient, pour \(u_0\) indépendant de \(\delta\):
\[
E[\tilde{u}(t; \delta, u_0)] = \tilde{u}(t; \delta, u_0).
\]

On peut maintenant supposer que \(u_0\) dépend de \(\delta\), et en particulier qu'il est égal à la valeur optimale \(u_0^*(\delta)\) calculée plus haut ; alors, \(\tilde{u}(.)\) est égale à la commande \(u^*(.)\) optimale par rapport à la fonctionnelle de coût \(J\). De plus, puisque \(u_0^*(\delta)\) est une fonction affine de \(\delta\) et que la composée de deux fonctions affines est une fonction affine, il vient
\[
E[u^*(t; \delta, u_0^*(\delta))] = u^*(t; \delta, u_0^*(\delta)).
\]

En appliquant à présent la relation (24) pour \(u_0 = \tilde{u}_0\) et en utilisant le fait que \(u_0^*(\delta) = \tilde{u}_0\), on obtient :
\[
E[u^*(t; \delta, u_0^*(\delta))] = E[u^*(t; \delta, \tilde{u}_0)] = u^*(t; \delta, \tilde{u}_0) \triangleq \tilde{u}(t).
\]

La commande \(\tilde{u}^*(\delta)\), optimale par rapport à l'espérance mathématique de \(J\), prend donc à chaque instant une valeur égale à l'espérance mathématique de la valeur de la commande \(u^*(\delta)\) pour laquelle \(J\) serait minimum si la perturbation \(\delta\) était connue.

Remarque 2 : Robustesse de la commande

Supposons que la matrice \(Q\) soit choisie de telle sorte qu'elle vérifie les conditions du théorème ci-dessus, et que, de plus, la matrice \(L_1\) définie dans la Section III soit de rang maximum. Il vient alors \(Q \geq L_1^T L_1 > 0\). Dans ce cas, la dérivée \(\tilde{u}^*\) de la commande de poursuite optimale possède les propriétés de robustesse de la régulation linéaire quadratique énoncées dans [8, 9]. Par conséquent, le gain \(K_1\) défini en (9) peut être perturbé multiplicativement par certains gains et déphasages sans que la régulation de poursuite cesse d'être réalisée (voir [9], Théorèmes 2 et 3 pour les conditions portant sur ces gains et ces déphasages). Les matrices \(A, B\) et \(C\) peuvent en outre être perturbées additivement par certaines matrices \(\delta A, \delta B\) et \(\delta C\). Ces matrices doivent être telles que l'application linéaire \(\delta F\) définie dans la base \(\theta_0\) de \(\mathbb{R}^{n+p}\) selon
\[
\delta F \triangleq \begin{pmatrix}
\delta A & 0 \\
\delta B & 0
\end{pmatrix},
\]
vol. 16, n° 4, 1982.
soit telle que l'image de \mathcal{N}_F par δF soit incluse dans \mathcal{N}_{F_1}. Les applications linéaires δF et δG (où δG est défini selon $\delta G \triangleq (\delta B^T) 0^T$ dans la base \mathcal{B}_0) s'écrivent alors dans la base $\mathcal{B}_0 \cup \mathcal{B}_I$:

$$
\delta F = \begin{pmatrix}
\delta F_L \\
\delta F_I \\
\delta F_1 \\
\delta F_{11}
\end{pmatrix}, \quad \delta G = \begin{pmatrix}
\delta G_L \\
\delta G_I \\
\delta G_1 \\
\delta G_{11}
\end{pmatrix}.
$$

Le Corollaire 3 de [9] donne une condition suffisante portant sur les normes spectrales de δF_L et δG_1 pour que la réaction de poursuite soit encore réalisée (les matrices δF_L, δF_I, δF_1 et δG_1 pouvant, elles, être quelconques).

v. Conclusion

Le problème de poursuite optimale a été traité dans cet article dans le cas où le système est sujet à des perturbations extérieures constantes inconnues. Par un procédé classique, ce problème de poursuite a été ramené à un problème de régulation sans perturbation. Celui-ci a été résolu par optimisation linéaire quadratique sous des hypothèses moins restrictives que la condition classique de stabilisabilité de l'état. Une loi de commande de la forme proportionnelle et intégrale habituelle a été obtenue, avec une valeur d'initialisation encore indéterminée. Cette indétermination a été levée par une optimisation stochastique. La commande finalement obtenue est optimale pour la fonction de coût $E(J)$, où J est l'indice quadratique considéré, et elle se trouve avoir à chaque instant une valeur égale à l'espérance mathématique de la valeur de la commande pour laquelle J serait minimum si les perturbations extérieures étaient connues. D'un point de vue pratique, l'optimisation de la valeur initiale de la commande permet de réduire au mieux le régime transitoire, compte tenu de la valeur prévue pour les perturbations extérieures. Les transitoires sont en effet les plus faibles quand l'‗énergie‘ représentée par l'indice de performance est minimale.

ANNEXE

DEMONSTRATION DES EXPRESSIONS (17) ET (22)

Considérons la décomposition (21) de P et posons

$$
P_1 \triangleq (P_{11} \quad P_{12}) \quad \text{et} \quad P_2 \triangleq (P_{21} \quad P_{22}).$$

R.A.I.R.O. Automatique/Systems Analysis and Control
