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Abstract

In a previous piece of work it has been shown that exponential stability of a linear time-varying (LTV) system can be evaluated
using new definitions of thepolesof such a system. The latter are given by afundamental set of rootsof the skew polynomialP (∂)
which defines the autonomous part of the system. Such a set may not exist over the initial fieldK of definition of the coefficients of
the system, but can exist over a suitable field extensionK̃ ⊃ K. It is shown here that conditions for stability can also be obtained
using linear factors of the polynomialP (∂) over another field extensioňK which may be smaller:̃K ⊃ Ǩ ⊃ K. The roots of
these factors are called thequasi-polesof the system. The necessary condition for system stability, expressed in function of these
quasi-poles, is more restrictive than the one involving a fundamental set of roots.

c© 2011 Published by Elsevier Ltd.

Keywords: poles, zeros, exponential stability, linear time-varying systems, factorisation of a skew-polynomial, field extensions

1. Introduction

The poles of a system are important since they provide a direct way for the analysis of the stability of the system.
Several kinds of poles have been recently introduced for linear time-varying (LTV) systems (Linear Time Invariant
(LTI) systems are considered as a special case of LTV systems in this paper). In [12], Lyapunov transformations
were used to obtain an upper triangular form of the state matrix, from which the notion ofpole set of the state matrix
was defined. Other approaches consider the system in a more intrinsic way, as a finitely presented moduleM over a
ring of differential operators or, equivalently, a ring of skew polynomials in indeterminate∂ = d/dt. This algebraic
framework was initiated by Malgrange [9] and next exploited in systems theory by several authors (see [4], [11], [14],
[13], [2] and related references). The same algebraic framework has been exploited in [10] to define poles and zeros
along with their multiplicities for LTV systems. In the latter contribution, the poles were defined using what was
called afundamental set of right roots of the skew polynomialP (∂) which defines the autonomous part of the system
M . More precisely, the latter is given by a scalar differential equation of the form

P (∂)y = 0, t ≥ t0, P (∂) =
n∑

i=0

ai∂
i, n ∈ N, ai ∈ K (1)

whereK is a field which contains not only constants, i.e.,∃a ∈ K such that∂a 6= 0. It was shown that such a set
of roots leads to a factorization
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P (∂) = (∂ − an)...(∂ − a1). (2)

where theai’s are pairwise nonconjugated. Factorization (2) is obtained over a well-chosen field extension of the
initial field K of definition of the coefficients ofM : ai ∈ K̃ ⊃ K, i = 1, ..., n [15].

In the work presented here it is shown that, under certain conditions, exponential stability can also be evaluated
from a factorization

P (∂) = (∂ − am)dm ...(∂ − a1)d1 ,m ≤ n (3)

where theai’s are pairwise nonconjugated. Notice that (3) is more general than (2) and therefore can be obtained
over a fieldǨ such thatK̃ ⊃ Ǩ ⊃ K. In what follows, stability of the autonomous system is shown to be related to
the zerosai of P of a factorization of type (3). Thus, in an control theory setting, theai’s are calledquasi-polesin the
sequel.

The paper is organized as follows: Section 2 introduces the mathematical background, especially facts about field
extensions, skew polynomials and differential operators which are well-known within the communities of ordinary
differential equations and symbolic computation (see, e.g., [3], [15], [5] and related references). In Section 3, the
definitions given in [10] along with some key results on the poles and zeros of LTV systems, are recalled. The link
between the multiple factors of (3) and the solutions of differential equation (1) is shown in Sections 4 and 5 while
Section 6 is devoted to concluding remarks.

2. Background notions

2.1. LTV systems and behaviors

In the algebraic framework mentioned in the Introduction, a linear system is a finitely presented left moduleM
over the ringR = K [∂] of ordinary differential operators in∂ = d/dt with coefficients in a differential fieldK (i.e.,
a commutative field equipped with one derivation). IfK does not exclusively contain constants (i.e., elements whose
derivative is zero),M is an LTV system. A vector of inputs ofM is a set of elementsu = (ui)i=1,...,m such that[u]R,
theR-module generated by the entries ofu, is free of rankm andM/[u]R is torsion. Notice that[u]R is a maximal
freeR-submodule ofM . If an outputy = (yi)i=1,...,p, yi ∈ M1 is also chosen, the triple(M,u, y) is acontrol system.

Let M be defined byRw = 0 whereR is a matrix with entries inR. Considering the solutions w.r.t. time,
the entries ofw, which define the variables of the system, must belong to a well-defined space of functions (or
distributions, hyperfunctions, etc.)W . The objectkerW (R•), whereR• denotes the left-multiplication byR, is
called theW − behavior associated withM . It is denoted byBW (M) and is a leftR-module. GivenW , BW (M) is
deduced fromM using the functorBW (•) = HomR(•,W ) [9]. Conversely,M is uniquely determined byBW (M)
if W is acogeneratorleft R-module [11].

Let f be a real-valued analytic function defined in an interval ofR of the form (A,+∞) for some realA. If

limt→+∞f(t) = +∞, ḟ(t) > 0, t > B for some realB ≥ A and limt→+∞
ḟ(t)
f(t) = 0, thenf is called anOre

function. A complex (resp. real) Ore field is a fieldC(f) (resp. R(f)) wheref is an Ore function (i.e., a field of
rational functions inf with coefficients inC (resp.R)). As shown in [2], every functiong belonging to an Ore field
is such that:

• limt→+∞Re(g(t)) andlimt→+∞Im(g(t)) exist inR̄ = R ∪ {−∞,+∞}

• is infra-exponential (i.e.,limt→+∞e−αtg(t) = 0) for everyα > 0)

• limt→+∞
ġ(t)
g(t) = 0

• if this Ore field is real,g(t) has a constant sign ast → +∞.

Let O∞ be the space of germs of analytic functions defined in an interval(A,+∞) as above. Assume thatK is an
Ore field. Then, the leftK [∂]-moduleO∞ is an injective cogenerator [2].

1The vectory here should not be mixed up with the scalar variabley in (1)

2



B. Marinescu and H. Bourlès / Procedia Computer Science 00 (2012) 1–10 3

2.2. Autonomous systems

The so-calledautonomous partΣ of the systemM is obtained by factoring out the input variables. From the
algebraic point of view this corresponds to thetorsion moduleT ∼= M/[u]R. As R is a simple ring2, T is a cyclic
left R-module (see, e.g., [8]) and can be characterized by a state representationẋ = Ax (whereẋ = dx

dt ), A ∈ Kn×n

or, equivalently, by (1) withP (∂) = ∂n +
∑n−1

i=0 pi∂
i andy a generator ofT . In the latter case,T ∼= R/RP .

Notice that equation (1) is not the unique differential equation which defines the autonomous system. Indeed, if
T ∼= T is anR-module defined by the equationP (∂)y = 0, thenP (∂) andP (∂) are said to besimilar (written
P (∂) ∼ P (∂)) (see, e.g., [3]) and they thus define thesameautonomous system. ThenR/RP (∂) ∼= R/RP (∂)
(as modules) andHomR(R/RP (∂),O∞) ∼= HomR(R/RP (∂),O∞) (asC−vector spaces). Conversely, asO∞ is
an injective cogenerator, from the latter isomorphism it follows thatR/RP (∂) ' R/RP (∂). Stability can thus be
analysed from the polynomialP (∂) in an equation (1) which defines that autonomous systemT .

The autonomous LTV system given by the torsion moduleT is said to be

• exponentially stableif anyO∞-solution approaches zero exponentially fort → +∞, i.e.,∀y ∈ HomR(T,O∞)
y : t 7→ y(t) of (1),∃C > 0 and∃τ > 0 such that| y(t) |≤ Ce−τt for large enought > 0.

• exponentially unstableif there exists aO∞-solutiony : t 7→ y(t) of (1) which is exponentially unbounded.

2.3. Noncommutative algebra

When dealing with LTV systems, polynomialP (∂) in (1) is skew, i.e., belongs to thenoncommutativering R =
K [∂] equipped with the commutation rule

∂a = a∂ + ȧ (4)

which is the Leibniz rule of derivation of a product [3]. LetP (∂) =
∑n

i=1 ai∂
i. If ∂ − α is a right factor ofP (∂)

we say thatα is a(right) root of P . In this case, there exists a polynomialQ(∂) such thatP (∂) = Q(∂)(∂ − α) and

choosingy to be a nonzero solution of∂y = α∂ (e.g.,y(t) = e
∫ t

t0
α(τ)dτ in this expression is well-defined), then

P (∂)y =
∑n

i=0 ai∂
iy = a0y0 + a1αy + a2∂αy + a3∂(∂αy) + ...

= a0y0 + a1αy + a2(α2 + α̇)y + a3∂(α2 + α̇)y + ...
=

∑n
i=0(aiNi(α))y,

(5)

where

N0(α) = 1 and Ni+1(α) = αNi(α) + Ṅi(α) for i ≥ 0 (6)

and thus
∑n

i=0 aiNi(α) = 0 sinceP (∂)y = 0. The last expression in (5) gives theevaluation ofP at α ∈ K,
denoted byP (α):

P (α) =
n∑

i=0

aiNi(α) (7)

whereNi is defined inductively by (6).P (α) = 0 if, and only if (iff), ∂ − α is a right factor ofP (∂). Notice that
it is difficult in practice to compute the roots ofP from the equationP (α) = 0 since expression (7) of the evaluation
of P atα leads to highly nonlinear ordinary differential equations inα.

If there exist polynomialsP ′(∂), P ′′(∂) and an elementa ∈ K such thatP (∂) = P ′(∂)(∂ − a)P ′′(∂), then
a is called azero of P . If P has a factorization (2) inton linear factors∂ − ai (not necessarily distinct), then
{a1, ..., an} is called afull set of zerosof P (∂). For any0 6= c ∈ K , the conjugate ofα by c, denoted byαc,
is αc = cαc−1 + ċc−1 = α + ċc−1 [3] (sinceK is a field, thusċ andc commute) and can be interpreted as fol-
lows: the variabley satisfiesẏ = αy iff z , cy satisfiesż = αcz, i.e. the multiplication byc is an isomorphism
R/K (∂ − α) →̃R/K (∂ − αc). ∆K (α) = {αc, c ∈ K , c 6= 0} is called theconjugacy classof α overK . The least

2i.e., a ring which has no proper nonzero ideal
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common left multiple[Pi, 1 ≤ i ≤ n]l of skew polynomialsPi (1 ≤ i ≤ n) exists. Let∆ = {γ1, ..., γn} ⊆ K . The
minimal polynomial of∆, denoted byP∆ is P (∂)∆ = [∂ − γi, 1 ≤ i ≤ n]l. ∆ is calledP -independentif the degree
of P∆ is n. A skew polynomialP of degreen has an infinite number ofright rootswhich lie in at mostn conjugacy
classes (see, e.g., [3] and [5]). All polynomials used in the sequel are skew, so all roots involved are right roots. To
alleviate the presentation, both adjectives will be skipped from now on.

3. Poles and stability [10]

3.1. Fundamental sets of roots

As shown in the section above, the definition of right roots provides a direct link between the roots of polynomial
P (∂) and the solutions of differential equation (1). In order to obtainthe whole classof solutions of (1), afundamental
set of rootsof P (∂) must be considered.

Definition 1: If P (∂) is a polynomial of degreen, a set ofn P-independent roots ofP (∂)3 is called afundamental
set of rootsof P (∂). A polynomial which has a fundamental set of roots over the fieldK of definition of its coefficients
is called aWedderburnor W-polynomial (overK ). �

Example 1:P (∂) = (∂−a)2, a ∈ R. Obviouslya is a root, but the two roots{a, a} are notP -independent. From
the double roota one can compute a fundamental set of roots over, e.g.,C(t), following the procedure introduced in
[10] : this set is{a, a + t−1} . �

The elementsγi of a fundamental set of roots are in direct relation with the elementsyi of a fundamental set of
solutionsof the differential equation (1). These relations consists in the elementary equations4

ẏiy
−1
i = γi. (8)

For Example 1, obviously,y1 = eat, y2 = teat, is afundamental set of solutionsof (1).

To further explain the link between a fundamental set of roots{γ1, ..., γn} of P (∂) and a fundamental set of
solutions{y1, ..., yn} of equation (1) let

W (yi)n
i=1 =


y1 y2 . . . yn
dy1
dt

dy2
dt . . . dyn

dt
...

... . . .
...

dn−1y1
dt

dn−1y2
dt . . . dn−1yn

dt

 , V (γi)n
i=1 =


1 1 . . . 1

∂(γ1) ∂(γ2) . . . ∂(γn)
∂2(γ1) ∂2(γ2) . . . ∂2(γn)

. . . . . . . . . . . .
∂(n−1)(γ1) ∂(n−1)(γ2) . . . ∂(n−1)(γn)


(9)

be the Wronskian and, respectively, the Vandermonde matrix associated with the two sets mentioned above. The
following result is a particularization to the conjugacy class of0 ∈ K of a more general property established for
W-polynomials in [6] and related references.

Proposition 1:For a set{y1, . . . , yn} in any differential fieldK , let γi = ẏiy
−1
i , i = 1, ..., n and consider the

Vandermonde matrix ofγ1, . . . , γn defined byV in (9) where∂i(.) is the evaluation of the polynomial∂i as introduced
in Section 2.3. Then

1. W (yi)n
i=1 = V (γi)n

i=1diag{y1, . . . , yn}.
2. The following conditions are equivalent:

(i) W (yi)n
i=1 (or, equivalently,V (γi)n

i=1) is invertible

(ii) The set{γ1, . . . , γn} is P -independent.

3according to the definition and notation in [5]
4γi is thus the logarithmic derivative ofyi.
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�

Definition 2: Consider an autonomous LTV systemΣ given by a torsionR-moduleT ∼= R/RP (∂) where
R = K [∂] and letγi ∈ K̃ ⊇ K , i = 1, ..., n, be such that{γ1, ..., γn} is a fundamental set of roots ofP (∂). If
K̃ is an Ore field, theγi’s are called thepolesof Σ; {γ1, ..., γn} is then called afundamental set of polesof Σ. �

Theorem 1 [[10]]: Consider an autonomous system
∑

which is defined by theR-torsion moduleT ∼= R/RP (∂).
Let {γ1, ..., γn} be a fundamental set of poles of

∑
over an Ore field̃K (assuming that such a set exists). Then,

∑
is

exponentially stableiff, for all i ∈ {1, ..., n},

lim
t→+∞

Re{γi(t)} < 0. (10)∑
is exponentially unstableiff at least one of theγi’s satisfies the condition

lim
t→+∞

Re{γi(t)} > 0. � (11)

Notice that, sincẽK is an Ore field, the limits (22) and (23) exist in̄R and depend only on the conjugacy class
of γi. Notice also that a fundamental set of roots ofP does not always exist overK , the initial field of definition of
the system; in that case, a field extensionK̃ must be constructed [10]. This is the case of Example 1:K = R but
K̃ = R(t) ) R.

Example 2:Let P (∂) = ∂2 + (t−1 − 2a)∂ + a2 − t−2 − at−1, a ∈ R. We can assume thatK = R(t). A
fundamental set of solutions of (1) withP (∂) as above isy1 = teat, y2 = t−1eat and a fundamental set of roots of
P (∂) is γ1 = a + t−1, γ2 = a− t−1. Sinceγ1, γ2 ∈ R(t), P (∂) is a W-polynomial over the initial field of definition
of the LTV system, i.e.,̃K = K , and no field extension is needed in this case.

4. Multiple factors

In the preceding section, a relation between a set ofn P -independent (right) roots of polynomialP (∂) and the
solutions of the differential equation (1) has been recalled using the elementary equations (8). This obviously allows
one to conclude on the asymptotic behavior of the solutionsyi of (1) by investigating the rootsγi as stated in Theorem
1. However, this analysis can also be done in many cases with a factorization (2) ofP (∂) for which there exist indices
i, j ∈ {1, ..., n} such thatai andaj are conjugated. In this case, the polynomialP (∂) in (2) is not necessarily a
W-polynomial over the fieldK of definition of the elementsai.

Theorem 2:Consider the homogeneous differential equation (1).

1. Suppose{a1, ..., an} is a full set of zeros ofP (∂). If

limsupt→+∞Re{ai(t)} < 0, i = 1, ..., n (12)

then any solution of (1) approaches zero exponentially ast → +∞.
2. If P (∂) admits a factorization (2) for which allai’s belong to areal Ore field, then condition (12) is also

necessaryfor all the solutions of (1) to approach zero exponentially zero ast → +∞. In the latter situation,
condition

limt→+∞Re{ai(t)} > 0 for some i ∈ {1, ..., n} (13)

is necessary and sufficient for the existence of an exponentially unbounded solution of (1).
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3. Assume thatP (∂) ∈ K [∂] whereK is an Ore field andP (∂) admits a factorisation (3) where theai’s are
pairwise non conjugated. Then,

T = ⊕1≤i≤mTi, Ti
∼=

R

R (∂ − ai)
di

. (14)

whereT = R/RP (∂). Moreover, we know thatlimt→+∞Re{ai (t)} exists inR̄. If there existsi ∈ {1, ..., n}
such thatlimt→+∞Re{ai (t)} = 0 (resp.,limt→+∞Re{ai (t)} > 0), then there exists a solutiony of (1)
which is hypo-exponential and such that|y (t)| 9 0 as t → +∞ (resp.,|y (t)| → +∞ exponentially as
t → +∞).

Proof:

1. Equation (1) withP (∂) given by (2) can equivalently be written in the form

(∂ − a1)y = z1

(∂ − a2)z1 = z2

... , t ≥ t0
(∂ − an−1)zn−2 = zn−1

(∂ − an)zn−1 = 0.

(15)

Setz0 = y and suppose that (12) holds. The dynamics ofzn−1 depends only on the last equation of (15) which
is of elementary type (8):

zn−1(t) = λne
∫ t

t0
an(τ)dτ (16)

whereλn is any constant. Asan satisfies (12),Re{an(t)} ≤ −βn for someβn > 0 and fort large enough, say,
t ≥ t1. It follows that

|e
∫ t

t1
an(τ)dτ | ≤ e−βn(t−t1), ∀t ≥ t1 (17)

and, as a consequence,

|zn−1(t)| ≤ αne−βn(t−t1),∀t ≥ t1 (18)

whereαn = |λn|e
∫ t1

t0
an(τ)dτ . Thuszn−1(t) approaches zero exponentially ast → +∞. The rest of the vari-

ableszi, i = n− 2, ..., 0 have the same property. Indeed, using Lemma 1 in Appendix A and the fact thatan−1

satisfies (12),zn−2, the solution of the last but one equation of (15), approaches zero exponentially ast → +∞.
The conclusion follows by induction towards the first equation of (15).

2. Let now theai’s belong to a real Ore field. Thenlimt→+∞ai(t) exists, so letlimt→+∞ai(t) = ai, i = 1, ..., n.
Suppose that all solutions of (1) approach zero exponentially whent → +∞. A particular solution of (1) or,

equivalently, of (15), isy(t) = y1(t) = e
∫ t

t0
a1(τ)dτ , z1(t) = z2(t) = ... = zn−1(t) = 0. More specifically,y1

corresponds to the solution of the homogeneous part of the first equation of (15). Moreover,limt→+∞y1(t) =
e
∫ +∞

t0
a1(τ)dτ . As y1 (t) approaches zero exponentially ast → +∞, there existα > 0 and t1 > t0 such

that
∣∣∣e∫ t

t0
(a1(τ)+α)dτ

∣∣∣ ≤ 1 whenevert ≥ t1. Therefore, fort ≥ t1,
∫ t

t0
(a1 (τ) + α) dτ ≤ 0. We know that

limt→+∞a1 (t) = ā1, therefore there existst2 ≥ t1 such that|a1 (t)− ā1| ≤ α
2 whenevert ≥ t2. For these

values oft, ā1 ≤ −α
2 + 1

t−t2

∫ t2
t0

(a1 (τ) + α) dτ. Takingt → +∞ yieldsā1 ≤ −α
2 < 0. Moreover, from (16)

it follows that the sign ofzn−1 is constant ast → +∞. Next, the solutions of (15) are

zk−1(t) = ce
∫ t

t0
ak(τ)dτ + e

∫ t
t0

ak(τ)dτ
∫ t

t0

zk(τ)e−
∫ τ

t0
ak(α)dα

dτ (19)

wherec is any constant andk = 2, ..., n. It follows by induction that the signs ofzn−2, ...,z1 are also constant
as t → +∞. Using now Lemma 2 in Appendix A for the first equation in (15) one concludes thatz1(t)
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decreases exponentially to0 whent → +∞. Another particular solution of (15) isy(t), z1(t) = e
∫

a2(t)dt,
z2(t) = z3(t) = ... = zn−1(t) = 0. It follows, as before, thata2 < 0. Again, using Lemma 2 in Appendix
A for the second equation in (15) one concludes thatz2(t) decreases exponentially to0 whent → +∞. The
conclusion follows using the same rationale down to the last equation.

For the last part of this point, by (16),χ(zn−1) = ān, whereχ(.) denotes the Lyapunov exponent defined in
Appendix A (χ(f) = limsupt→+∞

ln|f(t)|
t ). Also, by (19),zn−2 = cz′n−2 + z′′n−2 where

z′n−2 = e
∫ t

t0
an−1(τ)dτ

, z′′n−2 = e
∫ t

t0
an−1(τ)dτ

∫ t

t0

zn−1(τ)e−
∫ τ

t0
an−1(α)dα

dτ. (20)

From Lemma 3 (a) in Appendix A,z′n−2 ∈ Exp(ān−1). From parts (a) and (b) of the same lemma,

zn−1(t)e
−

∫ t
t0

an−1(τ)dτ ∈ Exp(ān − ān−1). From part (c) of the same result,
∫

zn−1(t)e−
∫

an−1(t)dtdt ∈
Exp(ān− ān−1); again, from part (b),z′′n−2 ∈ Exp(ān) and, choosingc > 0, zn−2 ∈ Exp(sup(ān−1, ān−2)).
The result follows by induction.

3. Asa1 in (3) is not conjugated withaj for j ∈ {2, ...,m}, a1 is not a left root ofPm−1(∂) = (∂−am)dm ...(∂−
a2)d2 and, therefore,(∂−a1)d1 andPm−1(∂) are left-coprime. By the chinese remainder theorem [7], it follows
that

R
RP (∂)

∼=
R

RPm−1(∂)
⊕ R

R(∂ − a1)d1
(21)

and (14) follows by induction. The second part of this point is a consequence of Lemma 4.
�

Example 3:Consider (1) withP (∂) = (∂−a2)(∂−a1) wherea1 = −t−
3
2 + 1

2 t−1+α, a2 = −t−
3
2 + 3

2 t−1+t+α,
α ∈ R. Thus,Ǩ = R(t). From Theorem 2 one can conclude that the solutions of (1) approach zero exponentially
iff α < 0. If α > 0, one of them diverges exponentially to+∞. Let now compute from the full set of zeros ofP
{a1, a2} a fundamental set of roots{γ1, γ2}. Obviously,γ1 = a1. Following the procedure given in [10], one can
find γ2 = −t−

3
2 + 1

2 t−1 + α + 1

e
t2
2

∫ t
t0

e
−t2
2 dt

from which it follows thatǨ ( K̃ .

5. Quasi-poles and stability

Definition 3: Consider an autonomous LTV systemΣ given by a torsionR-moduleT ∼= R/RP (∂) where
R = K [∂] and letai ∈ Ǩ ⊇ K , i = 1, ..., n, be such that{a1, ..., an} is a full set of zeros ofP (∂) . Let π1, ..., πp

(1 ≤ p ≤ n) be the conjugacy classes of theai’s. Themultiplicity of πj is the numberνj of zerosai which belong to
πj . Therefore,

∑p
i=1 νi = n. If Ǩ is an Ore field over which there exists a direct sum decomposition (14), theπi’s

are called thequasi-polesof Σ; {a1, ..., an} is then afull set of representants of quasi-polesof Σ. �

The following result is a consequence of Theorem 2 exploited in the module framework given in Section 2.2,
taking into account the asymptotic behavior of the elements of conjugacy classes over Ore fields:

Theorem 3 (main result):Consider an autonomous system
∑

which is defined by theR-torsion moduleT ∼=
R/RP (∂).

• Let {a1, ..., an} be a full set of representants of quasi-poles of
∑

over an Ore field (assuming that such a set
exists). Then,

∑
is exponentially stableiff, for all i ∈ {1, ..., n},

lim
t→+∞

Re{ai(t)} < 0. (22)∑
is exponentially unstableiff at least one of theai’s satisfies the condition

lim
t→+∞

Re{ai(t)} > 0. (23)

7
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• If P (∂) has a full set of zeros{a1, ..., an} in an Ore field, then
∑

is exponentially stableif (22) holds for all
i ∈ {1, ..., n}. If the ai’s belong to areal Ore field, condition (22) is also necessary for exponential stability;
furthermore, condition (23) is also necessary for exponential instability.�

Remark:Notice that conditions (22) and (23) are expressed using a full set of representants of quasi-poles obtained
for a given representation of the system

∑
(i.e., a given equation (1)), but, according to the module framework recalled

in Section 2, they are intrinsic in the sense that they depend only on the quasi-poles themselves.

6. Conclusion

Conditions for exponential stability have been given in terms of system quasi-poles (Theorem 3). Both poles and
quasi-poles of a given LTV system are calculated from factorizations of the polynomials which define the autonomous
part of the system. The latter factorizations may not exist over the initial field of definition of the coefficients of the
system and, in this case, field extensions are needed. In general, the quasi-poles can be computed over a smaller field
extension than the poles. If quasi-poles cannot be defined, sufficient conditions for exponential stability are given
using a full set of zeros (Theorem 3). If the latter are real-valued, these sufficient conditions are also necessary.

The definition and analysis of quasi-poles of the system can be extended to the zeros and hidden modes of the
system in a similar way. Indeed, these entities have been defined as torsion modules for LTI systems in [1]. In
[10] it has been shown that these definitions can be extended to the LTV case. This framework holds also for the
quasi-entities (quasi-poles and -zeros) introduced here.

Further extensions of this work will concern algorithms to provide factorizations of type (3). This is a difficult task
and, despite many important works in the direction of factoring ordinary differential operators (like [15] and related
references), it is not always possible to obtain such factorizations.

Appendix A. Four lemmas

The proofs of these lemmas are given in [2]; only some hints are provided here.

Lemma 1:Consider the equation

(∂ − a)y = z, a, z ∈ O∞. (A.1)

If lim supt→+∞Re (a (t)) < 0 andz (t) → 0 exponentially ast → +∞, then so doesy. �

Sketch of the proof :The solutions of(A.1) are

y(t) = cy1(t) + y2(t), y1(t) = e
∫

adt, y2(t) = y1(t)
∫

ze−
∫

adtdt (A.2)

wherec is any constant. Aslim supt→+∞Re (a (t)) < 0, from (A.2) follows thaty1(t) approaches zero expo-
nentially whent → +∞. As z (t) → 0 exponentially ast → +∞ there existsβ > 0 be such that|z| = O

(
e−βt

)
as

t → +∞; let γ ∈ (0,min (−ᾱ, β)). It can be shown that there existc, d > 0 such that|y (t)| ≤ |y1(t)|+ cde−γt for
t sufficiently large.

Lemma 2: Consider (A.1) wherea belong to areal Ore field, z(t) is real-valued and has a constant sign as
t → +∞ and letlimt→+∞a(t) = a. If a < 0 andy(t) approaches zero exponentially whent → +∞, thenz(t) also
approaches zero exponentially whent → +∞. �

Sketch of the proof :As y(t) approaches zero exponentially whent → +∞ anda < 0, from (A.2) it follows that
y2(t) = y(t)− y1(t) also approaches zero exponentially whent → +∞. Moreover,y2 can be written in the form

y2(t) =
f(t)
g(t)

, f(t) =
∫

ze−
∫

adtdt, g(t) = e−
∫

adt (A.3)
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wheree−
∫

adt → +∞ ast → +∞. Notice also thatdf/dt
dg/dt = − z(t)

a(t) . Sincea belongs to a real Ore field and has
a constant sign ast → +∞, f andg are comparable of order1 near+∞. z(t) anda(t) are also comparable. Thus,
limt→+∞y2(t) = limt→+∞

df/dt
dg/dt = −limt→+∞

z(t)
a(t) from which the conclusion follows.

Let Exp(a) denote the set of allf ∈ O∞ such thatf : (B,+∞) → R, f(t) ≥ 0 (t ≥ B) andχ(f) = a, where
χ(f) = limsupt→+∞

ln|f(t)|
t is the Lyapunov exponent off .

Lemma 3:

(a) If a ∈ O∞ is real-valued and is such thatlimt→+∞a(t) = ā ∈ R̄, thene
∫

a(t)dt ∈ Exp(ā).

(b) If f ∈ Exp(a1) andg ∈ Exp(a2) (a1, a2 ∈ R̄), then

(i) f + g ∈ Exp(a) wherea = sup(a1, a2);

(ii) fg ∈ Exp(a1 + a2) where(a1, a2) 6= (+∞,−∞).

(c) If f ∈ Exp(a), then
∫

f(t)dt ∈ Exp(a). �

Sketch of the proof :Points (a) and (b) are obvious. For point (c),ln(f(t)) ∼ āt (where ā is finite). Thus,
ln(f(t)) = āt + O(t) = ā(t + O(1)) from which it follows that

f(t) = eā(t+O(1)), (A.4)

which finally leads toχ(y) = ā.

Lemma 4:Consider the differential equation

(∂ − a)n
y = 0, a ∈ O∞, (A.5)

wheren is a positive integer. LetP (∂) = (∂ − a)n and consider the setSP consisting of all solutionsy ∈ O∞
of (A.5). Let A ∈ R be large enough, so thata, y can be viewed as analytic functions in(A,+∞) and letB > A.

Considerα = limsupt→+∞

∫ t
B

α(τ)dt

t−B , α = liminft→+∞

∫ t
B

α(τ)dτ

t−B whereα = Re{a}.
(i) The setSP is aC-vector space of dimensionn.
(ii) If α < 0, then ally ∈ SP tend to zero exponentially ast → +∞.
(iii) If α > 0, then all solutionsy ∈ SP

× are such that|y (t)| → +∞ exponentially ast → +∞.
(iv) If lim

t→+∞
α (t) = 0, then all solutionsy ∈ SP

× are hypo-exponential. Moreover, they are bounded ast → +∞ if,

and only ifn = 1 andα is integrable on[B,+∞) for B large enough. These solutions do not tend to zero ast → +∞.

Sketch of the proof :(i) The germa can be viewed as an analytic function in(A,+∞) for A large enough. Let
B > A and for anyi ∈ {1, ..., n} , the general solution of(A.5) in [B,+∞) is

yn (t) = U(t, B)
∑

0≤i≤n−1

Cn−i
(t−B)i

i!
, U(t, B) = e

∫ t
B

a(t)dτ (A.6)

which proves (i).
(ii) If α < 0, thenU (t, B) → 0 exponentially ast → +∞, thus so does|yn (t)| .
(iii) is similar to (ii).
(iv) is clear by the expression(A.6) .
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