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Abstract

In a previous piece of work it has been shown that exponential stability of a linear time-varying (LTV) system can be evaluated
using new definitions of thpolesof such a system. The latter are given Hpadamental set of rootsf the skew polynomiaP(9)

which defines the autonomous part of the system. Such a set may not exist over the inift€ldfedéfinition of the coefficients of

the system, but can exist over a suitable field exterBion K. It is shown here that conditions for stability can also be obtained
using linear factors of the polynomiat(d) over another field extensidd which may be smallerK D K D K. The roots of

these factors are called tiq@asi-polef the system. The necessary condition for system stability, expressed in function of these
quasi-poles, is more restrictive than the one involving a fundamental set of roots.
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Keywords: poles, zeros, exponential stability, linear time-varying systems, factorisation of a skew-polynomial, field extensions

1. Introduction

The poles of a system are important since they provide a direct way for the analysis of the stability of the system.
Several kinds of poles have been recently introduced for linear time-varying (LTV) systems (Linear Time Invariant
(LTI) systems are considered as a special case of LTV systems in this paper). In [12], Lyapunov transformations
were used to obtain an upper triangular form of the state matrix, from which the notpmieo$et of the state matrix
was defined. Other approaches consider the system in a more intrinsic way, as a finitely presented/frongirla
ring of differential operators or, equivalently, a ring of skew polynomials in indeterminated/dt. This algebraic
framework was initiated by Malgrange [9] and next exploited in systems theory by several authors (see [4], [11], [14],
[13], [2] and related references). The same algebraic framework has been exploited in [10] to define poles and zeros
along with their multiplicities for LTV systems. In the latter contribution, the poles were defined using what was
called afundamental set of right roots of the skew polynonitéd) which defines the autonomous part of the system
M. More precisely, the latter is given by a scalar differential equation of the form

Py =0,t>ty, PO)=Y a;0',neN, a; €K (1)
=0
whereK is a field which contains not only constants, i#:,€ K such thaba # 0. It was shown that such a set
of roots leads to a factorization
1
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P(9) = (0 — an)...(0 — a1). )

where theu;’s are pairwise nonconjugated. Factorization (2) is obtained over a well-chosen field extension of the
initial field K of definition of the coefficients af/: a; e K D K,i=1,...,n [15].

In the work presented here it is shown that, under certain conditions, exponential stability can also be evaluated
from a factorization

P0) = (0 — ap)?™..(0 —a))®™,m<n (3)

where thes;’s are pairwise nonconjugated. Notice that (3) is more general than (2) and therefore can be obtained
over a fieldK such thatk > K > K. In what follows, stability of the autonomous system is shown to be related to
the zerosi; of P of a factorization of type (3). Thus, in an control theory setting«t'®are calledquasi-polesn the
sequel.

The paper is organized as follows: Section 2 introduces the mathematical background, especially facts about field
extensions, skew polynomials and differential operators which are well-known within the communities of ordinary
differential equations and symbolic computation (see, e.g., [3], [15], [5] and related references). In Section 3, the
definitions given in [10] along with some key results on the poles and zeros of LTV systems, are recalled. The link
between the multiple factors of (3) and the solutions of differential equation (1) is shown in Sections 4 and 5 while
Section 6 is devoted to concluding remarks.

2. Background notions

2.1. LTV systems and behaviors

In the algebraic framework mentioned in the Introduction, a linear system is a finitely presented left thbdule
over the ringR = K|[0] of ordinary differential operators ii = d/dt with coefficients in a differential fiel&k (i.e.,
a commutative field equipped with one derivation)KIfdoes not exclusively contain constants (i.e., elements whose
derivative is zero))M is an LTV system. A vector of inputs df/ is a set of elements = (u;);—1.... ,m Such thafu|g,
the R-module generated by the entriesuofis free of rankm and M /[u]R is torsion Notice thatfu|g is a maximal
freeR-submodule of\/. If an outputy = (y;)i=1,...p, Yi € M*is also chosen, the triple\/, u, ) is acontrol system

Let M be defined byRw = 0 where R is a matrix with entries irR. Considering the solutions w.r.t. time,
the entries ofw, which define the variables of the system, must belong to a well-defined space of functions (or
distributions, hyperfunctions, etc.)y. The objectkery, (Re), where Re denotes the left-multiplication by, is
called thelV' — behavior associated witd/. It is denoted byBy (M) and is a lefR-module. GiveriV, By, (M) is
deduced fromV/ using the functoByy, (e) = Homp (e, W) [9]. Conversely M is uniquely determined by (M)
if W is acogeneratoeft R-module [11].

Let f be a real-valued analytic function defined in an intervaRodf the form (A, +oo) for some realA. If
limy— oo f(t) = +00, f(t) > 0,t > B for some realB > A andlimHJFoo% = 0, then f is called anOre
function A complex (resp. real) Ore field is a fieldl f) (resp. R(f)) where f is an Ore function (i.e., a field of

rational functions inf with coefficients inC (resp.R)). As shown in [2], every function belonging to an Ore field
is such that:

o limy oo Re(g(t)) andlim;_ 1o Im(g(t)) existinR = R U {—oo, +00}
e is infra-exponential (i.eim;— e~ **g(t) = 0) for everya > 0)

[ ] llmt*,+oo% =0

o if this Ore field is realg(t) has a constant sign as— +oc.

Let O be the space of germs of analytic functions defined in an intédal-co) as above. Assume thitis an
Ore field. Then, the lef [0]-moduleO, is an injective cogenerator [2].

1The vectory here should not be mixed up with the scalar variapie (1)
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2.2. Autonomous systems

The so-callecautonomous park of the systemM is obtained by factoring out the input variables. From the
algebraic point of view this corresponds to tieesion modulel’ = M /[u]g. As R is a simple ring, 7T is a cyclic
left R-module (see, e.g., [8]) and can be characterized by a state representatidn: (wherez = ‘fi—f), A e KM
or, equivalently, by (1) withP(9) = 9" + Z?:’Ol p;0" andy a generator off’. In the latter case]’ = R/RP.
Notice that equation (1) is not the unique differential equation which defines the autonomous system. Indeed, if
T = T is anR-module defined by the equatidi(d)y = 0, then P(9) and P(9) are said to besimilar (written
P(9) ~ P(9)) (see, e.g., [3]) and they thus define t@meautonomous system. Th&®/RP(9) = R/RP(9)

(as modules) andl ompg (R/RP(9), Ox) = Hompg(R/RP(9), O) (asC—vector spaces). Conversely, @s, is
an injective cogenerator, from the latter isomorphism it follows RARP(9) ~ R/RP(9). Stability can thus be
analysed from the polynomid(9) in an equation (1) which defines that autonomous sy&tem

The autonomous LTV system given by the torsion module said to be

o exponentially stablé any O -solution approaches zero exponentiallyfer +oo, i.e.,Vy € Homg (T, O)
y: t— y(t)of (1),3C > 0 and3r > 0 such that y(¢) |< Ce~ ™ for large enough > 0.

e exponentially unstabli there exists &) .-solutiony : ¢ — y(t) of (1) which is exponentially unbounded.

2.3. Noncommutative algebra

When dealing with LTV systems, polynomi&(9) in (1) is skew i.e., belongs to theaoncommutativeing R =
K [0] equipped with the commutation rule

da=ad+a 4)
which is the Leibniz rule of derivation of a product [3]. LB{9) = >_" , a;0". If & — «is a right factor ofP(9)

7

we say thaty is a(right) root of P. In this case, there exists a polynomil0) such thatP(9) = Q(9)(0 — «) and
choosingy to be a nonzero solution éfy = a0 (e.g.,y(t) = elio “MT i this expression is well-defined), then

POy = Z?:o a;0'y = agyo + aray + axday + azd(day) + ...
= apyo + aray + az(a? + &)y + azd(a® + &)y + ... (5)
=Y i—o(aiNi(@))y,

where

No(a) =1 and Niy1(a) = aN;(a) + Ni(a) fori >0 (6)

and thus)_"_, a;N;(a) = 0 sinceP(9)y = 0. The last expression in (5) gives teealuation ofP at o € K,
denoted byP(«):

P(a) = Z aiNi(a) (7)
=0

whereN; is defined inductively by (6)P(«) = 0 if, and only if (iff), 0 — « is a right factor ofP(9). Notice that
it is difficult in practice to compute the roots &f from the equatiorP(«) = 0 since expression (7) of the evaluation
of P ata leads to highly nonlinear ordinary differential equationgin

If there exist polynomials?’(9), P”(9) and an element € K such thatP(9) = P'(9)(0 — a)P"(0), then
a is called azeroof P. If P has a factorization (2) inta linear factorsd — a; (not necessarily distinct), then
{ai,...,a,} is called afull set of zeroof P(9). For any0 # ¢ € K, the conjugate ofa by ¢, denoted byn¢,
isa® = cac™! + ¢t = a+ éc! [3] (sinceK is a field, thus: andc commute) and can be interpreted as fol-
lows: the variabley satisfiesy = ay iff = £ cy satisfies: = a°z, i.e. the multiplication by is an isomorphism
R/K (0 — o) >R/K (0 — a°). Ak (a) = {a, c € K,c # 0} is called theconjugacy classf o overK. The least

2j.e., aring which has no proper nonzero ideal
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common left multiple/P;, 1 < i < n], of skew polynomialsP; (1 < ¢ < n) exists. LetA = {v1,...,7,} € K. The

minimal polynomial ofA, denoted byPa is P(0)a = [0 — v, 1 < ¢ < n];. A is called P-independenif the degree

of Pa isn. A skew polynomialP of degreen has an infinite number afght rootswhich lie in at most: conjugacy
classes (see, e.g., [3] and [5]). All polynomials used in the sequel are skew, so all roots involved are right roots. To
alleviate the presentation, both adjectives will be skipped from now on.

3. Poles and stability [10]

3.1. Fundamental sets of roots

As shown in the section above, the definition of right roots provides a direct link between the roots of polynomial
P(0) and the solutions of differential equation (1). In order to obta@whole classf solutions of (1), dundamental
set of rootsof P(9) must be considered.

Definition 1: If P(9) is a polynomial of degree, a set ofn P-independent roots @(9)2 is called afundamental
set of rootof P(9). A polynomial which has a fundamental set of roots over the fetf definition of its coefficients
is called awedderburror W-polynomial (oveK). ¢

Example 1:P(9) = (0 —a)?, a € R. Obviouslya is a root, but the two roota, a} are notP-independent. From
the double root: one can compute a fundamental set of roots over, €(g), following the procedure introduced in
[10] : this setis{a,a +t"1} . o

The elements;; of a fundamental set of roots are in direct relation with the elemgnt$ a fundamental set of
solutionsof the differential equation (1). These relations consists in the elementary eqgfiations

Byt = (8)
For Example 1, obviously;; = e%, y, = te®, is afundamental set of solutioms (1).

To further explain the link between a fundamental set of rdets ..., v, } of P(9) and a fundamental set of
solutions{ys, ..., y, } of equation (1) let

Y1 Y2 UYn 1 1 1

- R 9(7) y2) .o Om)
W(yi)iey = ) ) , Vi = | 8%(n) P(v2) .. ()

I D(3) 9 V(yz) ... 9" V()

©)
be the Wronskian and, respectively, the Vandermonde matrix associated with the two sets mentioned above. The
following result is a particularization to the conjugacy clas$)of K of a more general property established for
W-polynomials in [6] and related references.

Proposition 1:For a set{yy, ..., y,} in any differential fieldK, let~; = yz-ygl, i+ = 1,...,n and consider the
Vandermonde matrix ofi, . . . , v, defined byV in (9) whered?(.) is the evaluation of the polynomiét as introduced
in Section 2.3. Then

L W(yi)ies = V(vi)isadiag{ys, ..., yn}-

2. The following conditions are equivalent:
(i) W(y:)™, (or, equivalentlyV (v;)’_,) is invertible
(i) The set{~y,..., v, } is P-independent.

Saccording to the definition and notation in [5]
4+, is thus the logarithmic derivative af;.
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Definition 2: Consider an autonomous LTV systethgiven by a torsiorR-moduleT = R/RP(9) where
R = K[9] and lety; € K 2 K, i = 1,...,n, be such tha{~y, ..., v, } is a fundamental set of roots &%(9). If
K is an Ore field, they;’s are called th@olesof ; {1, ..., v, } is then called &undamental set of poled X. ¢

Theorem 1 [[10]]: Consider an autonomous systdmwhich is defined by th&-torsion modulel’ = R/RP(9).
Let {~1, ..., 7} be a fundamental set of poles pf over an Ore fielK (assuming that such a set exists). Thehis
exponentially stabldf, for all i € {1,...,n},

. 1151_(1 Re{v;(t)} <O0. (10)
> is exponentially unstabléf at least one of they;’s satisfies the condition

. ligrn Re{~i(t)} > 0.0 (11)
Notice that, sincéK is an Ore field, the limits (22) and (23) existiand depend only on the conjugacy class
of 7;. Notice also that a fundamental set of rootsfotioes not always exist ovés, the initial field of definition of
the system; in that case, a field extenskomust be constructed [10]. This is the case of Exampl& 1== R but
K=R() 2R.

Example 2:Let P(9) = 0% + (t7' — 2a)0 + a* —t72 — at™!, a € R. We can assume th#& = R(¢). A
fundamental set of solutions of (1) witR(9) as above ig;; = te*, y» = t~1e% and a fundamental set of roots of
P)isy1 =a+t1, 92 =a—t"1. Sincey, v, € R(¢), P(9) is a W-polynomial over the initial field of definition
of the LTV system, i.e K = K, and no field extension is needed in this case.

4. Multiple factors

In the preceding section, a relation between a set &-independent (right) roots of polynomi&l(9) and the
solutions of the differential equation (1) has been recalled using the elementary equations (8). This obviously allows
one to conclude on the asymptotic behavior of the solutigiog (1) by investigating the rootg; as stated in Theorem
1. However, this analysis can also be done in many cases with a factorization{@))dfor which there exist indices
i,j € {1,...,n} such thate; anda; are conjugated. In this case, the polynonidb) in (2) is not necessarily a
W-polynomial over the fiel&K of definition of the elements;.

Theorem 2. Consider the homogeneous differential equation (1).

1. Suppos€ay, ..., an} is a full set of zeros oP(0). If

limsupi— oo Re{a;(t)} <0, i=1,..,n (12)

then any solution of (1) approaches zero exponentially-as+oo.

2. If P(0) admits a factorization (2) for which all;’s belong to areal Ore field, then condition (12) is also
necessaryor all the solutions of (1) to approach zero exponentially zeré as +oo. In the latter situation,
condition

limi—, oo Re{a;(t)} > 0 for somei € {1,...,n} (13)

is necessary and sufficient for the existence of an exponentially unbounded solution of (1).
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3. Assume thaf’ (0) € K [0] whereK is an Ore field andP(9) admits a factorisation (3) where thg's are
pairwise non conjugated. Then,

R
R(0—a;)"
whereT = R/RP(9). Moreover, we know thdim;_. , ., Re{a; (t)} exists inR. Ifthere exists € {1,...,n}
such thatlim;_, o, Re{a; (t)} = 0 (resp.,lim;— . Re{a; (t)} > 0), then there exists a solutianof (1)

which is hypo-exponential and such that(t)] - 0 ast — +oo (resp.,|y (t)] — +oo exponentially as
t — +o00).

T =®i<i<mTi, T; = (14)

Proof:
1. Equation (1) withP(9) given by (2) can equivalently be written in the form
(O—a1)y==
(0 —az)z1 = 22
>t (15)

(a - anfl)zn72 = Zn-1
(0 — an)zn—1 = 0.

Setzy = y and suppose that (12) holds. The dynamics,of; depends only on the last equation of (15) which
is of elementary type (8):

Zno1 (t) — )\ne.ffo an (T)dT (16)

where),, is any constant. As,, satisfies (12)Re{a,(t)} < —p3,, for somes,, > 0 and fort large enough, say,
t > t;. It follows that

|€ftt1 an(T)dT‘ < e_ﬁn(t_t1)7 Vi >ty (17)

and, as a consequence,

|2n_1(t)] < ape P8 it > ¢, (18)

wherea,, = \An|ef53 an(r)dr Thusz,_(t) approaches zero exponentiallytas> +oco. The rest of the vari-
ablesz;, i = n — 2, ..., 0 have the same property. Indeed, using Lemma 1 in Appendix A and the faat,that
satisfies (12)z,, o, the solution of the last but one equation of (15), approaches zero exponentially asx.
The conclusion follows by induction towards the first equation of (15).

2. Let now thes;’s belong to a real Ore field. Théfm;_, , ~a;(t) exists, so letim;_, ; ca;(t) =a;,i = 1,...,n.
Suppose that all solutions of (1) approach zero exponentially when+oco. A particular solution of (1) or,

equivalently, of (15), ig/(t) = y1(¢t) = el a(r)dr, 21(t) = z2(t) = ... = z,_1(t) = 0. More specificallyy;
corresponds to the solution of the homogeneous part of the first equation of (15). Moteayer, ..y1(t) =

el @A pg y1 (t) approaches zero exponentially @as— +oo, there exista > 0 andt; > to such
that’eftto(al(T)*“)dT < 1 whenevert > t;. Therefore, fort > t,, ftto (a1 (1) +a)dr < 0. We know that
lim;— yoca1 (t) = a1, therefore there exists > t; such thata, (t) — a;| < § whenever > t,. For these
values oft, a; < —% + j:; (a1 (1) + @) dr. Takingt — +oo yieldsa; < —§ < 0. Moreover, from (16)

t—t
it follows that the sign ofznz_l is constant as — +oo. Next, the solutions of (15) are

t t t T
o1 (t) = celio w1 pJig ar(mdr / 2p(r)e Tt (@da g, (19)
to
wherec is any constant ankd = 2, ..., n. It follows by induction that the signs af, _», ..., z; are also constant
ast — +oo. Using now Lemma 2 in Appendix A for the first equation in (15) one concludes:ttat
6
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decreases exponentially towhent — +oco. Another particular solution of (15) ig(¢), z1(t) = el az(t)dt
z9(t) = z3(t) = ... = zp—1(t) = 0. It follows, as before, thai, < 0. Again, using Lemma 2 in Appendix
A for the second equation in (15) one concludes thét) decreases exponentially fovhent — +oo. The
conclusion follows using the same rationale down to the last equation.

For the last part of this point, by (16Y(z,—1) = a., wherex(.) denotes the Lyapunov exponent defined in
Appendix A (x(f) = limsup;—. 0o L0 Also, by (19),2,—2 = ¢2/,_, + 2//_, where
t t t T
Z;L_2 _ efto ar,L—l(T)dT, Z;l/_g _ e-{to ap—1(7)dr / Zn_l(T)ei'ftO an,l(a)dadT. (20)
to
From Lemma 3 (a) in Appendix Az/,_, € Exp(a,—1). From parts (a) and (b) of the same lemma,

Zno1(t)e” Jig an-1(mdr Ezp(a, — d,—1). From part (c) of the same resuﬁ,zn,l(t)e—f“nfl(t)‘“dt c
Exp(a, —an—1); again, from part (b);)/_,, € Exzp(a,) and, choosing > 0, z,—2 € Exp(sup(dn—_1,an—2)).
The result follows by induction.

3. Asajy in (3) is not conjugated with; for j € {2, ...,m}, a; is not a left root ofP,,_1(0) = (0 — a, )% ...(0 —
a2)% and, therefore(0—a;)? andP,,_(0) are left-coprime. By the chinese remainder theorem [7], it follows
that

R . R _ R
RP(@) o Rmel(a) R(8 — al)dl

and (14) follows by induction. The second part of this point is a consequence of Lemma 4.
<&

(21)

Example 3:Consider (1) withP(9) = (9—ax)(d—a1) wherea; = —t~2 + 3t " o, a0 = —t~ 2+ 3t 4t +a,
a € R. Thus,K = R(t). From Theorem 2 one can conclude that the solutions of (1) approach zero exponentially
iff & < 0. If a > 0, one of them diverges exponentially 4e>o. Let now compute from the full set of zeros Bf
{a1,a2} a fundamental set of rootgy;,v2}. Obviously,y; = a;. Following the procedure given in [10], one can
findy, = —t7% + 517! + o + ——1—5— from which it follows thatk ¢ K.

e2 f:(] e 2

5. Quasi-poles and stability

Definition 3: Consider an autonomous LTV systefhgiven by a torsionR-module” = R/RP(9) where
R = K[d] and leta; € K 2 K, i = 1,...,n, be such thafay, ...,a,,} is a full set of zeros oP(9) . Letny, ..., m,
(1 < p < n) be the conjugacy classes of tags. Themultiplicity of 7; is the number; of zerosa; which belong to
m;. ThereforeY"?  v; = n. If K is an Ore field over which there exists a direct sum decomposition (14}, e
are called thejuasi-polef %; {aq, ..., a, } is then afull set of representants of quasi-poles:. ¢

The following result is a consequence of Theorem 2 exploited in the module framework given in Section 2.2,
taking into account the asymptotic behavior of the elements of conjugacy classes over Ore fields:

Theorem 3 (main result)Consider an autonomous systém which is defined by th&k-torsion modulel’ =
R/RP(D).

e Let{ay,...,a,} be a full set of representants of quasi-pole ofover an Ore field (assuming that such a set
exists). Then)_ is exponentially stabldf, for all i € {1,...,n},

lim Re{a;(t)} <O0. (22)
t——+oo
> is exponentially unstabléf at least one of the;’s satisfies the condition

tiigloo Re{a;(t)} > 0. (23)
7
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e If P(0) has a full set of zero§a, ..., a,, } in an Ore field, ther}_ is exponentially stablé (22) holds for all
i € {1,...,n}. If the a;’s belong to areal Ore field, condition (22) is also necessary for exponential stability;
furthermore, condition (23) is also necessary for exponential instahility.

Remark:Notice that conditions (22) and (23) are expressed using a full set of representants of quasi-poles obtained
for a given representation of the syst&m(i.e., a given equation (1)), but, according to the module framework recalled
in Section 2, they are intrinsic in the sense that they depend only on the quasi-poles themselves.

6. Conclusion

Conditions for exponential stability have been given in terms of system quasi-poles (Theorem 3). Both poles and
guasi-poles of a given LTV system are calculated from factorizations of the polynomials which define the autonomous
part of the system. The latter factorizations may not exist over the initial field of definition of the coefficients of the
system and, in this case, field extensions are needed. In general, the quasi-poles can be computed over a smaller field
extension than the poles. If quasi-poles cannot be defined, sufficient conditions for exponential stability are given
using a full set of zeros (Theorem 3). If the latter are real-valued, these sufficient conditions are also necessary.

The definition and analysis of quasi-poles of the system can be extended to the zeros and hidden modes of the
system in a similar way. Indeed, these entities have been defined as torsion modules for LTI systems in [1]. In
[10] it has been shown that these definitions can be extended to the LTV case. This framework holds also for the
guasi-entities (quasi-poles and -zeros) introduced here.

Further extensions of this work will concern algorithms to provide factorizations of type (3). This is a difficult task
and, despite many important works in the direction of factoring ordinary differential operators (like [15] and related
references), it is not always possible to obtain such factorizations.

Appendix A. Four lemmas

The proofs of these lemmas are given in [2]; only some hints are provided here.
Lemma 1:Consider the equation

(0—a)y=2z, a,z € Oc. (A1)

If limsup,_,, , Re(a(t)) <0andz(t) — 0 exponentially a$ — +oo, then so doeg. ¢

Sketch of the proof The solutions of A.1) are

y(t) = cyr(t) + y2(t), yi(t) = e . ya(t) = a1 (t) / ze~ /ety (A.2)

wherec is any constant. Asimsup, ., ., Re(a(t)) < 0, from (A.2) follows thaty, (t) approaches zero expo-
nentially whent — +oo. As z (t) — 0 exponentially ag — +oo there exists3 > 0 be such thafz| = O (e~ #*) as
t — +o0; lety € (0, min (—a, 3)). It can be shown that there existd > 0 such thaly (¢)| < |y1(¢)| + cde™ " for
t sufficiently large.

Lemma 2: Consider (A.1) where: belong to areal Ore field, z(¢) is real-valued and has a constant sign as
t — +oo and letlim;_,, a(t) = a. If @ < 0 andy(t) approaches zero exponentially wher: +oc, thenz(t) also
approaches zero exponentially wher> +oco. ¢

Sketch of the proof As y(t) approaches zero exponentially wher> +oo anda < 0, from (A.2) it follows that
y2(t) = y(t) — y1(t) also approaches zero exponentially wher +occ. Moreover,y, can be written in the form

alt) = L8 g0 = [ee T et gle) e T (A3)
8
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wheree~ /44t _, 40 ast — +oo. Notice also tha% = —jgg Sincea belongs to a real Ore field and has

a constant sign as— +oo, f andg are comparable of orddrnear+oo. z(t) anda(t) are also comparable. Thus,

limi— 1 ooy () = limi— 1+ oo Zf;//ii = —limt_,%o% from which the conclusion follows.

Let Exzp(a) denote the set of alf € O such thatf : (B, +o00) — R, f(t) > 0 (¢t > B) andx(f) = a, where
x(f) = limsupt_)+oow is the Lyapunov exponent gf.

Lemma 3:
(a) If a € O is real-valued and is such thiin,_, , a(t) = a € R, thene/ “® ¢ Eap(a).
(b) If f € Exp(a;) andg € Exp(as) (a1, as € R), then
() f + g € Exp(a) wherea = sup(ay, az);
(i) fg € Exp(ay + az) where(ay, as) # (+00, —00).
(c) If f € Exp(a), then[ f(t)dt € Exp(a).
Sketch of the proof Points (a) and (b) are obvious. For point (&)(f(t)) ~ at (wherea is finite). Thus,
In(f(t)) =at+ O(t) = a(t + O(1)) from which it follows that

f(t) = e*tToWm), (A.4)

which finally leads toy (y) = a.
Lemma 4:Consider the differential equation
(8 - a’)n Y= 07 a € OOO? (A5)

wheren is a positive integer. LeP (9) = (0 —a)" and consider the s&p consisting of all solutiong € O,
of (A.5). Let A € R be large enough, so that y can be viewed as analytic functions(iA, +oco) and letB > A.

t t
Consider = limsup;— o0 fB;i(;)dt, o = liminfi— oo thaf;)dT wherea = Re{a}.

(i) The setSp is aC-vector space of dimension

(i) If @ < 0, then ally € Sp tend to zero exponentially as— +oo.

(iii) If a > 0, then all solutiong; € Sp * are such thaly (¢)| — +oo exponentially ag — +oc.

(iv) If tliglooa (t) = 0, then all solutiong € Sp * are hypo-exponential. Moreover, they are bounded-as+ o if,

and only ifn. = 1 anda is integrable oiB, +o0c) for B large enough. These solutions do not tend to zeto-ast+oco.

Sketch of the proof (i) The germa can be viewed as an analytic function(id, +oo) for A large enough. Let
B > Aandforanyi € {1,...,n}, the general solution (fA.5) in [B, +c0) is

(t—B)
7!

yn () =U(tB) > Cuy . U(t,B) = elz e (A6)

0<i<n—1

which proves (i).
(i) If @ < 0, thenU (¢, B) — 0 exponentially ag — +oo, thus so doegy,, (t)] .
(iii) is similar to (ii).
(iv) is clear by the expressidm.6) .
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