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Abstract

Classical feedback linearization has poor robustness proper-
ties and cannot be easily combined with a Ho or Hy type
control law. We proposc here to transform by feedback
the original nonlinear system into its linear approximation
around a given operating point, and prove that this allows
preserve the good robustness properties obtained by a linear
control law which it is associated with. This method con-
stitutes a way of robustly controlling an uncertain nonlinear
system around an operating point.

1 Introduction

In this paper, we present a robust method for feedback lin-
earization. We consider a nonlinear system with n states and
m inputs described in a state-space form by

= f()+ Y gi(@)ui = f(2) +g(@u (1)
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with
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in which z € E™ denotes the state, u € E™ is the control
input, and f(x), g1(z), -+, gm(z) are smooth vector fields
defined on an open subset of E™. We assume that the state is
available for the control.

The main advantage of the classical feedback linearization
method [1] comes from the fact that applying to system (1)
an appropriate control law

9(2) £ [ ai(z)

to(z, w) = a.(z) + B:(z)w,

the feedback system becomes linear from new input w, so
it can be regulated using a classical linear feedback. Sull,
this method has two main drawbacks [2]. Firstly, since the
system is clearly linearized by simplifying its nonlinearity,

this treatment can tum out not being robust if the nonlin-
earity is uncertain. Moreover, in many linear control laws
(like for example H, control or Ha control), the required
performance is specified by weighting (frequentially or not)
various variables. As a consequence, it is difficult to com-
bine theses methods with the classical linearization, since
the obtained system has no physical meaning: whatever the
original nonlinear system is, one usually comes down to the
same Brunovsky form (multiple chains of integrators). For
example, designing a weighting function associated with u
in order to take into account some saturations will be ex-
tremely difficult, because the design has to be done consider-
ing w, which is not in reality applied to the system, and the
behaviour will be very different depending on whether one
considers u or w, so a robust design with respect to w may
be not robust at all with respect to u.

In this paper, we propose a linearization method which we
believe can overcome these two difficulties. For, we use a
fundamental idea of automatic control: a feedback which
modifies too much the natural behaviour of a system has lit-
tle chance of being robust. As a consequence, feedback lin-
earization must perform on the original system the most little
possible transformation. Looked at from that point of view,
a natural step is to use the nonlinear feedback which trans-
forms the original system into its tangent linearized system
around a given operating point. Although this idea is natural,
its relevance has to be proved. This is done in the sequel,
using an appropriate approach for stability and robustness,
namely "W-stability™ [3].

The paper will be organized as follows. In section 2, we
recall some facts about W-stability. In section 3 we prnpose
a robust feedback lineari
clarified in section 4.

2 Review of Wh-stability

In order to analyze the properties of the robust feedback
linearizing method that will be proposed, let us firstly re-
call some results from [3] about W-stability. This approach
makes use of the Sobolev space W™ of functions b : BT —
R" such that h and its distributional derivative h belong to




L%. The norm in W™ is then defined as

b = [~ " omerae+ [~ Wbt g

and the notion of local W-gain can be defined as usually [4].
DEFINITION 1: Letbe G : W™ — W™ a time-invariant
nonlinear system and

K = {k>0, 3> 0:||Gullw < k|lullw,

Wu € W™ such that ||u|w < €}
If K is nonempty, G is said to be locally-W-stable (I-W-5)
and
wi(G) = inf(K)
is called the local-W-gain of G.

Consider now that G : W™ — W™ is a time-invariant
nonlinear system described by state-space equations
F(z,u)

H(z,u)

r =
y =
with equilibrium point (z,u) = (0,0). Let
G(s)=C(sI-A)'B+D
be the linear approximation of G around its equilibrium
point, i.e.
A OF _om _ox
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The following result illustrates an important property of
Sobolev space W™,

PROPOSITION 1 : Assume that (A4, B) is stabilizable,
(C, A) is detectable and G € Heo. Then G is [-W-s and
Tw1(G) =|Glloo-

On this basis, one can obtain a local version of the well-
known Small Gain Theorem.
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Figure 1

THEOREM 1 : Consider the standard closed-loop system
in Fig.1, where G1 : W™ — W™ and G : W™ — Wn,
Assume that this closed-loop system is well-posed [5], i.e.
there exist two operators Hy and Hy : WnH™ o Wrim
such that

e = Hjyuand y = Hau,

| & — | _|wm
=[a)o=[h] me- (]
Then, if
wi(G1)1wi(Ga) < 1,
the closed-loop system is [-W-g, i.e. Hy and Hy are [-W-s.

This result provides a tool to analyze in an input-output
framework the robustness properties of a nonlinear closed-
loop system when small moves are considered. Intuitively,
completeness of the small W-gain condition will guarantee
stability with respect to “small signals”. Moreover, although
one loses the global aspect of the Small Gain Theorem, this
local version is less conservative since only local stability is
concerned. This will be used in section 4 to demonstrate the
robustness properties of the feedback linearization method
proposed in the next section,

3 A robust method for feedback linearization

Contrarily to the classical feedback linearization which trans-
forms the original nonlinear system (1) into a Brunovsky
form, the present method consists in transforming it into its
tangent linearized system around an operating point, here
chosen as z = 0, that is

z=Adz+ Bv (2)
with
s 8f 2
£5| _ adBEg(0).

For, suppose that distributions Gy, G, - -, Gp—1 defined as

Go span{g,---,gm}s
G = span{gi,---,gm,adsg, -, adsgm},

G; span{adfg; : 0< k<i, 1< j<m},
fori=0,1,---,n — 1, satisfy the classical hypotheses

(i) distribution G; has constant dimension near x = 0 for
0<i<n-1,

(ii) distribution G, has dimension n,

(iii) distribution G; is involutive for0 < i < n —2.

Then, as is well known [1], there exist real-valued func-
tions Ai(z),--,Am(z) defined on a neighborhood I of
0 sansfying, for numbers ry,---,ry such that

+ T'm =0,

F 4 =
oA e

() foralli € [1,m), allj € [1,m] and all z € U,

-2
Ly Aj(z) = Ly LpAj(z) = - = LgiL? Aj(z) =0,

(1j) the m x m matrix

Lo, L7 M ()

Ly L7 A (2)
a | Lg Ly La(z)
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Ly L' An(z) Ly L7~ A (2)




is nonsingular at z = 0. We will denote M 2 M(0).

Consider on this basis the associated classical linearizing
state feedback

uc(z, w) = ae(x) + Be(z)w (3)
with
(@) & ~M~\(2)N (), Bo(z) £ M~(2),
N@) 2[ LPa() LPl() Lram(@) 17

and change of coordinates
Te = 133,[:) )
given by
¢=[$) - [ b, () ﬁf’cm(z) ]T

e

T
bal@) 2 [ M@ L@ - LFAE) |

Then one has the following result.

THEOREM 2 : Consider system (1) and suppose that f(z)
and g(z) satisfy hypotheses (i), (i) and (iii). Then, under
state feedback

u(z,v) = a(z) + B(z)v
and change of coordinates
z = ¢(z)
defined by
e (z) + Be(z) LT " 6c(x),
Be(z)R™, )]
T~ ¢c(),

a(z)
B(z)
é(z)

e e e

where
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system (1) is transformed into system (2).

gether with change of coordinates (4), it is known from [1]
that original nonlinear system (1) is transformed into

To = A,z + Bow (6)
where
Aey Orixra  Oryxrg Or ¢
Ur‘th Acn TaXT3 T2 X Tm
A: — ¥ . . 1
Or ey Orpxrs Orpxrs *° Ac

each r; x r; matrix A;; being equal to

010 0
001 0
Ay = o e 1
. R 1
000 0
and
Bq Dn w1 G"] =1 01-\ w1
B, = Or?xl B‘q Or:.xi 0,-,-x1 ,
Urmxl Or‘,.xl Ur...xl e Bc...

each r; % 1 matrix B, being equal to

B,=[0 0 U

On the other hand, (A, B) being a controllable pair, it is
well known from classical linear control theory (see [6] for
example) that there exist matrices T' (n x n), L (m x n) and
R (m x m) such that

T(A- BRL)T™ = A, and TBR = B,,

T and R being non singular.
On this basis. it is immediate to see that system (6) is trans-
formed into (2) using feedback

w=LT"'z. + R~ (%)
and change of coordinates
z=T"'r.. (9]

Combining (3),(4) with (7),(8), it is clear that feedback

ac(z) + Be(z)w
@c(z) + Be(x)LT ™ ¢e(z) + Be(z) R v

a(z) + 8(z)v (9

u =

e 1l

together with change of coordinates
z=¢(z) =T " pe(x) (10}
transforms original nonlinear system (1) into its tangent lin-
earized version (2) around z = 0.
Moreover, linear parts of (9) and (10
da d¢
— =0, — =T O = Fewns
Oz lz=0 ' Ozlz=0 " and 5(0) #

since these feedback and change of coordinates have no in-
fluence on the linear part of original nonlinear system (1). As
a consequence, one has

T—_-aéc ' :—M»g andR=M‘1,
Az lz=0 8z lz=0
which concludes the proof. A




4 Robustness analysis of the method
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As was said above, we claim that this method has certain
robustness properties which can be analyzed using the con-
cept of W-stability. Consider in Fig.2, as in [7], the stan-
dard diagram for robustness analysis of an uncertain system,
where y» € BP? represents the measured signals, in our con-
text supposed to be state z € R™ of nonlinear time-invariant
system P (i.e. po = n), va € E™ is the control signal,
andy; € BP1 v, € B™ are introduced to depict the uncer-
tainty A operating on the original system. A is nonlinear,
time-invariant, and such that

ywi(A) <6

This system can be represented in a state-space form by

& = flz)+an(@)n + gz
i = h(z)+k(z)vn +klz)v . (11
Ya = &

Suppose that we are interested in robustly controlling this
uncertain system around a given operating point z = z°,
chosen here for convenience as z° = 0. A possible way to
deal with this problem makes use of the linearizing feedback
law derived in section 2.
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For, let us consider in Fig.3 the corresponding linear prob-
lem, where P(s) is the transfer function of the linear approx-
imation of P around z = 0, i.e.

Az + Byvy + Bavs
Cz + Dyv; + Davs (12)
T

-
Ps) : w0
¥2

wun

with
_of ok
A_E:‘::D‘ C_E;."::U,

B1 =g1(0), B2 =g2(0), D1 = k1(0), and D2 = ka(0),

Suppose that one has found a state feedback linear con-
troller K (no matter how it has been constructed) which sta-
bilizes P(s) and such that the transfer function from v; to y;,
ie. (P, K), satisfies

IF(P(), K)lloo < %

If this is the case, the closed-loop system in Fig.4 is stable
for all uncertainty A; satisfying ||A(s)|| < 4.

— ﬁ(s) P—
n—m" i
P(s)

Yar— ¥
— K pa—
Figure 4

Returning now to the uncertain nonlinear system of Fig.2,
let us associate the linearizing feedback of Theorem 2

a(z) + B(z)vy

3 vz
LF : o)

z

where a(z), 8(z) and ¢(z) are constructed according to
Theorem 2 on the basis of f(z) and ga(z), to linear con-
troller K, that is

b‘; =Kz.
The system relying v to y5 = z is now linear. How-

ever, considering the general closed-loop system in Fig.5,
A (v1,v4) = (y1,y4) is still nonlinear and given by

i = Az+ B+ [g—f-gﬂx}l ‘U
z=p="(z)
n = (M) +k(@)a(@)) mp-10) + Fr1(@)omg-1(s) 01
+ [k2(2)B()] o= g1 () " V2 (13)
yé = Zz.
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Figure 5

A crucial issue concerns the point at which ong cvaluates
robustness (see [8]). Indeed, one is interested in obtaining
robustness for system P : (v, v2) = (y1,¥2) controlled by
K and LF (Fig. 6.1), but linear controller K, which has
been designed to this aim (at least around x = 0 since it has
been computed on the basis of P(s)), is now acting on A
(Fig.6.2), and this situation can deteriorate robustness prop-
erties that have been obtained. However, the key point is that
A and P have in fact the same linear approximation around
the operating point z = 0, thanks to the particular linearizing
feedback used here.
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P A
vz Y2 v yh
-
LF+K K
Figure 6.1 Figure 6.2

Let us define as T(A, K') the nonlinear operator relying
v 10 1 in Fig.6.2. According to state-space equations (13)
of A, T(A, K) is given by

e
Il

a9
(A + BgK)z + [a . QI{I}] g ‘1

[h(z) + kﬂ(z)a(x)]3=¢-l(,} + [kl(z)],=¢—:h) U
+ [k2(2)B(2)] zmg-1(zy - K + 2- (14)

Then one has the following result.

n

THEOREM 3: Consider the closed-loop system in Fig.5
where P is given by equations (11). Suppose that f(z) and
g2(z) satisfy the hypotheses of Theorem 2, and that lineariz-
ing feedback LF and change of coordinates ¢(z) are given

by (5). If linear controller K stabilizes P(s) defined in (12)
and satisfies 1
I7:(P(s), K)lleo < 5>

then T (A, K) is locally W-stable and

(15)

w1 (2(A, K)) < 3.

As a consequence, the present feedback ensures local-
W-stability for every nonlinear uncertainties A such that
Twi(A) < 4.

Proof: Firstly, Let T'(s) be the linear approximation of
T(A, K) around z = 0. Considering state equations (14)
with A + Bo K stable, applying Proposition 1 leads to

1w, (T(A, K)) = || T(8)]]o-
Then, since clearly
T(s) = Fi(Als), K),

where A(s) is the linear approximation of A around z = 0,

one has
i (T(A, K)) = [|F(A(s), K)|oo- (16)

On the other hand, A(s) is defined as

i = Az+ B + By
A() : w = Cz+Diwi+Davsy,
v = =z

the different matrices being computed on the basis of (13).
Because of

Box o ag—!
Bzle=0 ) Ozlz=0 Oz |;=a = Inxn and (0) = Imxm,
one has

=By, Ba = By,

. - d¢
A=A B = —'-yl(z)]
z=p~1(0)

dz

= [0h Ok  Ga
¢ = [33+ = a(z) + ka2(z) 3 L=o-\(n)
¢!
8z lz=0
=

Dy = Dy and Dy = [k2(2)8()] 2= 4-1(0) = D25
thus proving that A(s) = P(s). Then, for any linear con-
troller K achieving (15), one has, remembering (16),
1
wi(T(A, K)) = |F(P(s), K)lloo < 5-

As a consequence, according to Theorem 1, the closed-
loop interconnection is I-W-stable for every nonlinear uncer-
tainties such that vy (A) < 6. Py




Remark 2: This method, which confers to the feedback
linearized system the behaviour of the original nonlinear sys-
tem for small moves around = = 0 (here supposed to be the
design point), will lose its robustness properties for systems
having very strong nonlinearities, since the linear behaviour
imposed by the linearized feedback law will be too constrain-
ing. Still, as far as nonlinear robust control around an equi-
librium point is concerned, consider that the linear controller
K achieves the optimal value of attenuation (which is not of-
ten desirable, but is here supposed for clarity of discussion),
ie.

IF(P6), Kllen < 52—
maz

then the linearizing feedback proposed here is the best one
that can be associated with this linear controller, since it does
not deteriorate the closed-loop system robustness proper-
ties (and clearly no linearizing feedback can improve them).
Moreover, it can ensure in any case stability for an exact
model all over the operating domain, and as a consequence
is clearly better than the linear controller alone (this is shown
in [10] in the particular case of a steam turbine).

Remark 3. There exist an infinite number of pairs (linear
controller-linearizing feedback) achieving the same result. In
particular, there exists a linear controller K to be associated
with the classical linearizing feedback, i.e.

K.=(R'K-L)T™,

but practically, this is not a convenient way for designing
controllers, since a physical analysis is required in Hy or Heo
methods.

Remark 4. The method described here for robustly con-
trolling uncertain systems must be compared with nonlinear
Hae control ([91L[7]). A theoretical comparison is not easy.
Still, a possible difference could concern the size of the sig-
nals considered, since W-stability (see Definition 1) allows
to analyse only small moves of a nonlinear system. How-
ever, the proposed method does not involve the numerical
problems of nonlinear He, control associated with Hamilton-
Jacobi equations or NLMI’s.

Remark 5: We have given in this paper a general theoreti-
cal framework to ideas that had been applied with success on
the particular example of a steam turbine ([2],[10]).

Remark 6: The method developed here for state feedback
linearizable systems can be applied in an input-output lin-
earization context o asymptotically minimum phase nonlin-
ear systems, but the details need to be worked out.

5 Conclusion

In this paper we have proposed a method for robustly control-
ling around a design point a nonlinear feedback linearizable
system P. This method consists in associating a robust linear
control law to a particular linearizing feedback. This feed-
back, instead of resulting in the classical Brunovsky form, is
computed in order that the feedback linearized system coin-
cides with P(s), the tangent linearized system of P around

this design point. Using then W-stability, it is proved that
this is the only feedback that does not deteriorate the robust-
ness properties obtained by the linear control law.
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